In the present study, an analysis for steady hydromagnetic mixed convective generalised Couette flow between two infinite parallel plates of arbitrary electrical conductivities and finite thicknesses filled with a porous medium in the presence of a uniform transverse magnetic field in a rotating system with the Hall effect is presented. The heat transfer characteristics of the fluid flows are also investigated, taking viscous and Joule dissipations into account. Exact solutions of the resulting simultaneous ordinary differential equations governing the fluid flows are obtained in a closed form. The closed form analytical solutions for shear stress and mass flow rate are also obtained. To examine the physical consequences and flow characteristics, the numerical results for velocity, induced magnetic field, temperature field, shear stress, mass flow rate, and rate of heat transfer are computed for different values of various system parameters and are displayed in graphical and tabular forms. An interesting observation recorded that there arises flow reversal in the secondary flow direction when the permeability parameter is very small, i.e., when Darcian drag force is very large.

1.
Adesanya
,
S. O.
,
Oluwadare
,
E. O.
,
Falade
,
J. A.
, and
Makinde
,
O. D.
, “
Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions
,”
J. Magn. Magn. Mater.
396
,
295
303
(
2015
).
2.
Agarwal
,
J. P.
, “
On generalized incompressible Couette flow in hydromagnetics
,”
Appl. Sci. Res., Sect. B
9
(
4
),
255
266
(
1961
).
3.
Ajibade
,
A. O.
and
Umar
,
A. M.
, “
Effect of chemical reaction and radiation absorption on the unsteady MHD free convection Couette flow in a vertical channel filled with porous materials
,”
Afr. Mat.
27
(
1
),
201
213
(
2016
).
4.
Anjali Devi
,
S. P.
and
Ganga
,
B.
, “
Effects of viscous and Joules dissipation on MHD flow, heat and mass transfer past a stretching porous surface embedded in a porous medium
,”
Nonlinear Anal.: Modell. Control
14
(
3
),
303
314
(
2009
).
5.
Aris
,
R.
,
Vectors, Tensors, and The Basic Equations of Fluid Mechanics
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1962
).
6.
Bear
,
J.
,
Dynamics of Fluids in Porous Media
(
Dover Publications
,
New York
,
1988
).
7.
Beg
,
O. A.
,
Zueco
,
J.
, and
Takhar
,
H. S.
, “
Unsteady magnetohydrodynamic Hartmann–Couette flow and heat transfer in a Darcian channel with Hall current, ionslip, viscous and Joule heating effects: Network numerical solutions
,”
Commun. Nonlinear Sci. Numer. Simul.
14
(
4
),
1082
1097
(
2009
).
8.
Borrelli
,
A.
,
Giantesio
,
G.
, and
Patria
,
M. C.
, “
Magnetoconvection of a micropolar fluid in a vertical channel
,”
Int. J. Heat Mass Transfer
80
(
1
),
614
625
(
2015
).
9.
Borrelli
,
A.
,
Giantesio
,
G.
, and
Patria
,
M. C.
, “
Influence of an internal heat source or sink on the magnetoconvection of a micropolar fluid in a vertical channel
,”
Int. J. Pure Appl. Math.
108
(
2
),
425
445
(
2016
).
10.
Borrelli
,
A.
,
Giantesio
,
G.
, and
Patria
,
M. C.
, “
Reverse flow in magnetoconvection of two immiscible fluids in a vertical channel
,”
J. Fluids Eng.
139
(
10
),
101203
(
2017
).
11.
Chamkha
,
A. J.
, “
Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects
,”
Numer. Heat Transfer, Part A
32
(
6
),
653
675
(
1997
).
12.
Chamkha
,
A. J.
, “
On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions
,”
Int. J. Heat Mass Transfer
45
(
12
),
2509
2525
(
2002
).
13.
Chang
,
C. C.
and
Yen
,
J. T.
, “
Magneto-hydrodynamic channel flow as influenced by wall conductance
,”
Z. Angew. Math. Phys.
13
(
3
),
266
272
(
1962
).
14.
Cramer
,
K. R.
and
Pai
,
S. I.
,
Magnetouid-Dynamics for Engineers and Applied Physicists
(
McGraw-Hill Book Company
,
New York
,
1973
).
15.
Das
,
S.
,
Jana
,
R. N.
, and
Makinde
,
O. D.
, “
An oscillatory MHD convective flow in a vertical channel filled with porous medium with Hall and thermal radiation effects
,”
Spec. Top. Rev. Porous Media: Int. J.
5
(
1
),
63
82
(
2014
).
16.
Datta
,
N.
and
Jana
,
R. N.
, “
Hall effects on hydromagnetic convective flow through a channel with conducting walls
,”
Int. J. Eng. Sci.
15
(
9-10
),
561
567
(
1977
).
17.
Fersadou
,
I.
,
Kahalerras
,
H.
, and
Ganaoui
,
M. El.
, “
MHD mixed convection and entropy generation of a nanofluid in a vertical porous channel
,”
Comput. Fluids
121
,
164
179
(
2015
).
18.
Ghosh
,
M.
and
Pal
,
P.
, “
Zero Prandtl-number rotating magnetoconvection
,”
Phys. Fluids
29
,
124105
(
2017
).
19.
Ghosh
,
S. K.
and
Bhattacharjee
,
P. K.
, “
Magnetohydrodynamic convective flow in a rotating channel
,”
Arch. Mech.
52
(
2
),
303
318
(
2000
).
20.
Ghosh
,
S. K.
,
Pop
,
I.
, and
Nandi
,
D. K.
, “
MHD fully developed mixed convection flow with asymmetric heating of the wall
,”
Int. J. Appl. Mech. Eng.
7
(
4
),
1211
1228
(
2002
).
21.
Gill
,
W. N.
and
Casal
,
E. D.
, “
A theoretical investigation of natural convection effects in forced horizontal flows
,”
AIChE J.
8
(
4
),
513
518
(
1962
).
22.
Guria
,
M.
,
Das
,
B. K.
,
Jana
,
R. N.
, and
Ghosh
,
S. K.
, “
Effects of wall conductance on MHD fully developed flow with asymmetric heating of the wall
,”
Int. J. Fluid Mech. Res.
34
(
6
),
521
534
(
2007
).
23.
Heidary
,
H.
,
Hosseini
,
R.
,
Pirmohammadi
,
M.
, and
Kermani
,
M. J.
, “
Numerical study of magnetic field effect on nano-fluid forced convection in a channel
,”
J. Magn. Magn. Mater.
374
,
11
17
(
2015
).
24.
Hudoba
,
A.
,
Molokov
,
S.
,
Aleksandrova
,
S.
, and
Pedcenko
,
A.
, “
Linear stability of buoyant convection in a horizontal layer of an electrically conducting fluid in a moderate and high vertical magnetic field
,”
Phys. Fluids
28
,
094104
(
2016
).
25.
Hunt
,
J. C. R.
, “
Magnetohydrodynamic flow in rectangular ducts
,”
J. Fluid Mech.
21
(
4
),
577
590
(
1965
).
26.
Jagadeesan
,
K.
, “
Heat transfer due to hydromagnetic channel flow with conducting walls
,”
AIAA J.
2
(
4
),
756
758
(
1964
).
27.
Jana
,
R. N.
, “
Wall conductance effects on convective horizontal channel flow
,”
Z. Angew. Math. Phys.
26
(
3
),
315
324
(
1975
).
28.
Jha
,
B. K.
and
Aina
,
B.
, “
Role of induced magnetic field on MHD natural convection flow in vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates
,”
Alexandria Eng. J.
55
(
3
),
2087
2097
(
2016
).
29.
Jha
,
B. K.
,
Aina
,
B.
, and
Ajiya
,
A. T.
, “
MHD natural convection flow in a vertical parallel plate microchannel
,”
Ain Shams Eng. J.
6
,
289
295
(
2015
).
30.
Job
,
V. M.
and
Gunakala
,
S. R.
, “
Finite element analysis of unsteady radiative MHD natural convection Couette flow between permeable plates with viscous and Joule dissipations
,”
Int. J. Pure Appl. Math.
99
(
2
),
123
143
(
2015
).
31.
Mahmud
,
S.
,
Tasnim
,
S. H.
, and
Mamun
,
M. A. H.
, “
Thermodynamic analysis of mixed convection in a channel with transverse hydromagnetic effect
,”
Int. J. Therm. Sci.
42
(
8
),
731
740
(
2003
).
32.
Mazumdar
,
B. S.
, “
Effect of wall conductances on hydromagnetic flow and heat transfer in a rotating channel
,”
Acta Mech.
28
(
1
),
85
99
(
1977
).
33.
Mohan
,
M.
, “
Combined effects of free and forced convection on magnetohydrodynamic flow in a rotating channel
,”
Proc. Indian Acad. Sci.
85
(
5
),
383
401
(
1977
).
34.
Nagy
,
T.
and
Demendy
,
Z.
, “
Influence of wall properties on Hartmann flow and heat transfer in a rotating system
,”
Acta Phys. Hung.
73
(
2
),
291
310
(
1993
).
35.
Nagy
,
T.
and
Demendy
,
Z.
, “
Effects of Hall currents and Coriolis force on Hartmann flow under general wall conditions
,”
Acta Mech.
113
(
1
),
77
91
(
1995
).
36.
Poots
,
G.
, “
Laminar natural convection flow in magneto-hydrodynamics
,”
Int. J. Heat Mass Transfer
3
(
1
),
1
25
(
1961
).
37.
Prasada Rao
,
D. R. V.
and
Krishna
,
D. V.
, “
Combined effect of free and forced convection on MHD flow in a rotating porous channel
,”
Int. J. Math. Math. Sci.
5
(
1
),
165
182
(
1982
).
38.
Samad
,
S. A.
, “
Effect of contact resistance on steady MHD flows through circular pipes having constant conductivity and finite wall thickness
,”
Int. J. Eng. Sci.
23
(
9
),
969
974
(
1985
).
39.
Sarojamma
,
G.
and
Krishna
,
D. V.
, “
Transient hydromagnetic convective flow in a rotating channel with porous boundaries
,”
Acta Mech.
40
(
3
),
277
288
(
1981
).
40.
Seth
,
G. S.
,
Mahato
,
N.
,
Ansari
,
M. S.
, and
Nandkeolyar
,
R.
, “
Combined free and forced convection flow in a rotating channel with arbitrary conducting walls
,”
Int. J. Eng. Sci. Technol.
2
(
5
),
184
197
(
2010
).
41.
Seth
,
G. S.
,
Sarkar
,
S.
, and
Makinde
,
O. D.
, “
Combined free and forced convection Couette-Hartmann flow in a rotating channel with arbitrary conducting walls and Hall effects
,”
J. Mech.
32
(
5
),
613
629
(
2016
).
42.
Seth
,
G. S.
and
Singh
,
J. K.
, “
Mixed convection hydromagnetic flow in a rotating channel with Hall and wall conductance effects
,”
Appl. Math. Modell.
40
(
4
),
2783
2803
(
2016
).
43.
Seth
,
G. S.
and
Singh
,
M. K.
, “
Combined free and forced convection MHD flow in a rotating channel with perfectly conducting walls
,”
Indian J. Theor. Phys.
56
,
203
222
(
2008
).
44.
Singh
,
J. K.
,
Joshi
,
N.
, and
Begum
,
S. G.
, “
Unsteady magnetohydrodynamic Couette-Poiseuille flow within porous plates filled with porous medium in the presence of a moving magnetic field with Hall and ion-slip effects
,”
Int. J. Heat Technol.
34
(
1
),
89
97
(
2016
).
45.
Singh
,
K. D.
and
Kumar
,
R.
, “
Combined effects of Hall current and rotation on free convection MHD flow in a porous channel
,”
Indian J. Pure Appl. Phys.
47
,
617
623
(
2009
).
46.
Singh
,
K. D.
and
Pathak
,
R.
, “
Effect of rotation and Hall current on mixed convection MHD flow through a porous medium filled in a vertical channel in presence of thermal radiation
,”
Indian J. Pure Appl. Phys.
50
,
77
85
(
2012
).
47.
Sivaprasad
,
R.
,
Prasad Rao
,
D. R. V.
, and
Krishna
,
D. V.
, “
Hall effects on unsteady MHD free and forced convection flow in a porous rotating channel
,”
Indian J. Pure Appl. Math.
19
(
7
),
688
696
(
1988
).
48.
Snyder
,
W. T.
, “
The influence of wall conductance on magnetohydrodynamic channel-flow heat transfer
,”
J. Heat Transfer
86
(
4
),
552
556
(
1964
).
49.
Soundalgekar
,
V. M.
, “
On generalised MHD Couette flow with heat transfer
,”
Proc. Indian Acad. Sci.
64
(
5
),
304
314
(
1966
).
50.
Soundalgekar
,
V. M.
, “
On heat transfer in crossed-fields MHD channel flow between conducting walls
,”
Proc. Nat. Inst. Sci.
35
(
2
),
329
(
1969
).
51.
Soundalgekar
,
V. M.
and
Haldavnekar
,
D. D.
, “
MHD free convective flow in a vertical channel
,”
Acta Mech.
16
(
1
),
77
91
(
1973
).
52.
Srinivasacharya
,
D.
and
Kaladhar
,
K.
, “
Mixed convection flow of couple stress fluid between parallel vertical plates with Hall and ion-slip effects
,”
Commun. Nonlinear Sci. Numer. Simul.
17
(
6
),
2447
2462
(
2012
).
53.
Srinivas
,
S.
and
Muthuraj
,
R.
, “
Effects of thermal radiation and space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method
,”
Commun. Nonlinear Sci. Numer. Simul.
15
(
8
),
2098
2108
(
2010
).
54.
Sutton
,
G. W.
and
Sherman
,
A.
,
Engineering Magnetohydrodynamics
(
McGraw-Hill Book Company
,
New York
,
1965
).
55.
Yen
,
J. T.
, “
Effect of wall electrical conductance on magnetohydrodynamic heat transfer in a channel
,”
J. Heat Transfer
85
(
4
),
371
377
(
1963
).
56.
Young
,
F. J.
and
Huang
,
H.
, “
Effects of external circuit and wall conditions on magnetohydrodynamic free convection between two heated walls
,”
Z. Angew. Math. Phys.
15
(
4
),
419
425
(
1964
).
57.
Yu
,
C. P.
and
Yang
,
H. K.
, “
Effect of wall conductances on convective magnetohydrodynamic channel flow
,”
Appl. Sci. Res.
20
(
1
),
16
24
(
1969
).
You do not currently have access to this content.