We report detailed analyses of evaporation and atomisation characteristics of nanofuel droplets in a contactless environment (acoustic levitation) under external radiative heating. Two base fuels, ethanol and n-dodecane with a significant difference in their respective vapour-pressures, are considered. Nanoparticles (NPs) of cerium oxides (CeO2) are utilised as nano-additives at a dilute particle loading rate (PLR) of 0%-0.5% by weight. Pure ethanol droplets vaporise at a faster rate than pure dodecane droplets and do not exhibit any secondary atomisation. However, pure dodecane droplets exhibit two modes of secondary breakup; Kelvin-Helmholtz instability induced stripping and catastrophic breakup beyond a certain threshold value of the initial droplet size. Nanofuel droplets of ethanol neither exhibit any significant change in the vaporisation rate nor exhibit secondary atomization. Contrarily, dodecane-based nanofuels show enhanced vaporisation due to heat absorption by nanoparticles and consequently different modes of secondary breakup. Interestingly, dodecane-based nanofuel droplets exhibit internal boiling induced atomization. A time scale analysis considering orthokinetic NP aggregation, evaporation lifetime, and bubble growth rate is presented to elucidate the mechanism of such internal boiling. The theoretical non-dimensional time scale (τ*) so coined is extended to estimate the minimum value of the droplet size necessary for exhibiting boiling. The analysis shows excellent agreement with the experimental observations. Furthermore, we propose a unique three-dimensional regime map to correlate the breakup modes with droplet sizes, PLR, and heating rates.

1.
S. U. S.
Choi
, “
Enhancing thermal conductivity of fluids with nanoparticles
,”
ASME Publ. Fed.
231
,
99
106
(
1995
).
2.
M. I.
Pryazhnikov
,
A. V.
Minakov
,
V. Y.
Rudyak
, and
D. V.
Guzei
, “
Thermal conductivity measurements of nanofluids
,”
Int. J. Heat Mass Transfer
104
,
1275
1282
(
2017
).
3.
J.-H.
Lee
 et al, “
Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles
,”
Int. J. Heat Mass Transfer
51
(
11
),
2651
2656
(
2008
).
4.
Y.
Gan
and
L.
Qiao
, “
Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles
,”
Combust. Flame
158
(
2
),
354
368
(
2011
).
5.
R. A.
Yetter
,
G. A.
Risha
, and
S. F.
Son
, “
Metal particle combustion and nanotechnology
,”
Proc. Combust. Inst.
32
(
2
),
1819
1838
(
2009
).
6.
B.
Rotavera
,
A.
Kumar
,
S.
Seal
, and
E. L.
Petersen
, “
Effect of ceria nanoparticles on soot inception and growth in toluene–oxygen–argon mixtures
,”
Proc. Combust. Inst.
32
(
1
),
811
819
(
2009
).
7.
A.
Miglani
and
S.
Basu
, “
Coupled mechanisms of precipitation and atomization in burning nanofluid fuel droplets
,”
Sci. Rep.
5
,
15008
(
2015
).
8.
A.
Miglani
and
S.
Basu
, “
Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet
,”
J. Heat Transfer
137
(
10
),
102001
(
2015
).
9.
K.
Kannaiyan
,
K.
Anoop
, and
R.
Sadr
, “
Effect of nanoparticles on the fuel properties and spray performance of aviation turbine fuel
,”
J. Energy Resour. Technol.
139
(
3
),
032201
(
2017
).
10.
Y.
Gan
,
Y. S.
Lim
, and
L.
Qiao
, “
Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations
,”
Combust. Flame
159
(
4
),
1732
1740
(
2012
).
11.
P. M.
Guerieri
,
R. J.
Jacob
,
J. B.
DeLisio
,
M. C.
Rehwoldt
, and
M. R.
Zachariah
, “
Stabilized microparticle aggregates of oxygen-containing nanoparticles in kerosene for enhanced droplet combustion
,”
Combust. Flame
187
,
77
86
(
2018
).
12.
M.
Ghamari
and
A.
Ratner
, “
Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles
,”
Fuel
188
,
182
189
(
2017
).
13.
M.
Ghamari
and
A.
Ratner
, “
Combustion characteristics of diesel and jet-A droplets blended with polymeric additive
,”
Fuel
178
,
63
70
(
2016
).
14.
Y.
Gan
and
L.
Qiao
, “
Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles
,”
Int. J. Heat Mass Transfer
55
(
21–22
),
5777
5782
(
2012
).
15.
A.
Miglani
,
S.
Basu
, and
R.
Kumar
, “
Insight into instabilities in burning droplets
,”
Phys. Fluids
26
(
3
),
032101
(
2014
).
16.
K.
Pandey
,
K.
Chattopadhyay
, and
S.
Basu
, “
Combustion dynamics of low vapour pressure nanofuel droplets
,”
Phys. Fluids
29
(
7
),
074102
(
2017
).
17.
B.
Pathak
and
S.
Basu
, “
Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets
,”
Phys. Fluids
28
(
12
),
123302
(
2016
).
18.
A. L.
Yarin
,
G.
Brenn
,
O.
Kastner
,
D.
Rensink
, and
C.
Tropea
, “
Evaporation of acoustically levitated droplets
,”
J. Fluid Mech.
399
,
151
204
(
1999
).
19.
S.
Basu
,
A.
Saha
, and
R.
Kumar
, “
Thermally induced secondary atomization of droplet in an acoustic field
,”
Appl. Phys. Lett.
100
(
5
),
054101
(
2012
).
20.
N.
Otsu
, “
A threshold selection method from gray-level histograms
,”
Automatica
11
(
285–296
),
23
27
(
1975
).
21.
S.
Basu
,
A.
Saha
, and
R.
Kumar
, “
Criteria for thermally induced atomization and catastrophic breakup of acoustically levitated droplet
,”
Int. J. Heat Mass Transfer
59
,
316
327
(
2013
).
22.
A.
Sanyal
,
S.
Basu
, and
R.
Kumar
, “
Experimental analysis of shape deformation of evaporating droplet using Legendre polynomials
,”
Phys. Lett. A
378
(
5–6
),
539
548
(
2014
).
23.
D. C. K.
Rao
,
S.
Karmakar
, and
S.
Basu
, “
Atomization characteristics and instabilities in the combustion of multi-component fuel droplets with high volatility differential
,”
Sci. Rep.
7
(
1
),
8925
(
2017
).
24.
S. R. G.
Avila
and
C.-D.
Ohl
, “
Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles
,”
J. Fluid Mech.
805
,
551
576
(
2016
).
25.
I.
Javed
,
S. W.
Baek
, and
K.
Waheed
, “
Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures
,”
Combust. Flame
162
(
1
),
191
206
(
2015
).
26.
I.
Javed
,
S. W.
Baek
, and
K.
Waheed
, “
Evaporation characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures
,”
Combust. Flame
160
(
1
),
170
183
(
2013
).
27.
C. R.
Wilke
and
P.
Chang
, “
Correlation of diffusion coefficients in dilute solutions
,”
AIChE J.
1
(
2
),
264
270
(
1955
).
28.
S.
Basu
,
E.
Tijerino
, and
R.
Kumar
, “
Insight into morphology changes of nanoparticle laden droplets in acoustic field
,”
Appl. Phys. Lett.
102
(
14
),
141602
(
2013
).
29.
L. G.
Bremer
,
P.
Walstra
, and
T.
van Vliet
, “
Estimations of the aggregation time of various colloidal systems
,”
Colloids Surf., A
99
(
2
),
121
127
(
1995
).

Supplementary Material

You do not currently have access to this content.