A direct numerical simulation of a fully developed turbulent Couette-Poiseuille flow with a rod-roughened wall is performed to investigate the impact of the surface roughness on the flow characteristics compared to the influence of the roughness on a turbulent Poiseuille flow. Transverse rods are periodically arranged on the bottom wall with a streamwise pitch of p = 8k. The roughness height is k = 0.12h, where h is the channel half-height. The mean velocity profile shows that the logarithmic layer of a turbulent Couette-Poiseuille flow is significantly shortened by surface roughness, although that of a turbulent Poiseuille flow with surface roughness is increased. In addition, the Reynolds stresses for the Couette-Poiseuille flow with rod roughness are decreased in the outer layer, contrary to the observation of a turbulent Poiseuille flow with rod roughness. The decomposition of the Reynolds stresses into small- and large-scale motions confirms that the large-scale features dominantly contribute to the decrease of the Reynolds stresses in the outer layer. Although a large-scale counter-rotating roll mode is observed through temporally averaged streamwise fluctuating structures, the roll mode for the Couette-Poiseuille flow over a rough wall is significantly inhibited by the surface roughness due to weakened high- and low-streaky patterns near the centerline. The energy spectrum of the streamwise velocity fluctuations shows that the surface roughness contributes mainly to organizing the entire flow field; thus, the large-scale features observed in a turbulent Couette-Poiseuille flow are significantly suppressed with little interaction between the inner and outer layers.

1.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
2.
Afzal
,
N.
, “
Millikan’s argument at moderately large Reynolds number
,”
Phys. Fluids
19
,
600
602
(
1976
).
3.
Ashrafian
,
A.
and
Andersson
,
H. I.
, “
The structure of turbulence in a rod-roughened channel
,”
Int. J. Heat Fluid Flow
27
,
65
79
(
2006a
).
4.
Ashrafian
,
A.
and
Andersson
,
H. I.
, “
Roughness effects in turbulent channel flow
,”
Prog. Comput. Fluid Dyn., Int. J.
6
,
1
20
(
2006b
).
5.
Ashrafian
,
A.
,
Andersson
,
H. I.
, and
Manhart
,
M.
, “
DNS of turbulent flow in a rod-roughened channel
,”
Int. J. Heat Fluid Flow
25
,
373
383
(
2004
).
6.
Avsarkisov
,
V.
,
Hoyas
,
S.
,
Oberlack
,
M.
, and
García-Galache
,
J. P.
, “
Turbulent plane Couette flow at moderately high Reynolds number
,”
J. Fluid Mech.
751
,
R1
(
2014
).
7.
Aydin
,
E. M.
and
Leutheusser
,
H. J.
, “
Plane-Couette flow between smooth and rough walls
,”
Exp. Fluids
11
,
302
312
(
1991
).
8.
Bakken
,
O. M.
,
Krogstad
,
P. Å.
,
Ashrafian
,
A.
, and
Andersson
,
H. I.
, “
Reynolds number effects in the outer layer of the turbulent flow in a channel with rough walls
,”
Phys. Fluids
17
,
065101
(
2005
).
9.
Bandyopadhyay
,
P. R.
, “
Rough-wall turbulent boundary layers in the transition regime
,”
J. Fluid Mech.
180
,
231
266
(
1985
).
10.
Bech
,
K. H.
,
Tillmark
,
N.
,
Alfredsson
,
P. H.
, and
Andersson
,
H. I.
, “
An investigation of turbulent plane Couette flow at low Reynolds numbers
,”
J. Fluid Mech.
286
,
291
325
(
1995
).
11.
Bernardini
,
M.
,
Pirozzoli
,
S.
, and
Orlandi
,
P.
, “
Velocity statistics in turbulent channel flow up to Reτ = 4000
,”
J. Fluid Mech.
742
,
171
191
(
2014
).
12.
Bhaganagar
,
K.
,
Kim
,
J.
, and
Coleman
,
G.
, “
Effect of roughness on wall-bounded turbulence
,”
Flow, Turbul. Combust.
72
,
463
492
(
2004
).
13.
Burattini
,
P.
,
Leonardi
,
S.
,
Orlandi
,
P.
, and
Antonia
,
R. A.
, “
Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall
,”
J. Fluid Mech.
600
,
403
426
(
2008
).
14.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Connelly
,
J. S.
, “
Examination of a critical roughness height for outer layer similarity
,”
Phys. Fluids
19
,
095104
(
2007
).
15.
Hamilton
,
J. M.
,
Kim
,
J.
, and
Waleffe
,
F.
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
348
(
1995
).
16.
Hoyas
,
S.
and
Jiménez
,
J.
, “
Scaling of velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
17.
Ikeda
,
T.
and
Durbin
,
P. A.
, “
Direct simulations of a rough-wall channel flow
,”
J. Fluid Mech.
571
,
235
263
(
2007
).
18.
Jackson
,
P. S.
, “
On the displacement height in the logarithmic profiles
,”
J. Fluid Mech.
111
,
15
25
(
1981
).
19.
Jiménez
,
J.
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
20.
Jiménez
,
J.
and
Moser
,
R. D.
, “
What are we learning from simulating wall turbulence?
,”
Philos. Trans. R. Soc., A
365
,
715
732
(
2007
).
21.
Jiménez
,
J.
and
Pinelli
,
A.
, “
The autonomous cycle of near-wall turbulence
,”
J. Fluid Mech.
389
,
335
359
(
1999
).
22.
Kim
,
J. H.
and
Lee
,
J. H.
, “
Direct numerical simulation of a turbulent Couette–Poiseuille flow: Turbulent statistics
,”
Int. J. Heat Fluid Flow
72
,
288
303
(
2018
).
23.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
, “
An immersed boundary finite-volume method for simulations of flow in complex geometries
,”
J. Comput. Phys.
171
,
132
150
(
2001
).
24.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
25.
Kim
,
K.
,
Baek
,
S. J.
, and
Sung
,
H. J.
, “
An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations
,”
Int. J. Numer. Methods Fluids
38
,
125
138
(
2002
).
26.
Kitoh
,
O.
and
Umeki
,
M.
, “
Experimental study on large-scale streak structure in the core region of turbulent plane Couette flow
,”
Phys. Fluids
20
,
025107
(
2008
).
27.
Kitoh
,
O.
,
Nakabyashi
,
K.
, and
Nishimura
,
F.
, “
Experimental study on mean velocity and turbulence characteristics of plane Couette flow: Low-Reynolds-number effects and large longitudinal vortical structure
,”
J. Fluid Mech.
539
,
199
227
(
2005
).
28.
Komminaho
,
J.
,
Lundbladh
,
A.
, and
Johansson
,
A.
, “
Very large structures in plane turbulent Couette flow
,”
J. Fluid Mech.
320
,
259
285
(
1996
).
29.
Krogstad
,
P. Å.
and
Antonia
,
R. A.
, “
Surface roughness effects in turbulent boundary layers
,”
Exp. Fluids
27
,
450
460
(
1999
).
30.
Krogstad
,
P. Å.
,
Andersson
,
H. I.
,
Bakken
,
O. M.
, and
Ashrafian
,
A.
, “
An experimental and numerical study of channel flow with rough walls
,”
J. Fluid Mech.
530
,
327
352
(
2005
).
31.
Lee
,
J. H.
, “
Turbulent boundary layer flow with a step change from smooth to rough surface
,”
Int. J. Heat Fluid Flow
54
,
39
54
(
2015
).
32.
Lee
,
J. H.
,
Sung
,
H. J.
, and
Krogstad
,
P. Å.
, “
Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall
,”
J. Fluid Mech.
669
,
397
431
(
2011
).
33.
Lee
,
S.-H.
and
Sung
,
H. J.
, “
Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall
,”
J. Fluid Mech.
584
,
125
146
(
2007
).
34.
Leonardi
,
S.
,
Orlandi
,
P.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, “
Structure of turbulent channel flow with square bars on one wall
,”
Int. J. Heat Fluid Flow
25
,
384
392
(
2004
).
35.
Leonardi
,
S.
,
Orlandi
,
P.
,
Smalley
,
R. J.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, “
Direct numerical simulations of turbulent channel flow with transverse square bars on the wall
,”
J. Fluid Mech.
491
,
229
238
(
2003
).
36.
Marusic
,
I.
,
Mathis
,
R.
, and
Hutchins
,
N.
, “
High Reynolds number effects in wall turbulence
,”
Int. J. Heat Fluid Flow
31
,
418
428
(
2010
).
37.
Marusic
,
I.
,
Monty
,
J. P.
,
Hultmark
,
M.
, and
Smits
,
A. J.
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
38.
Mathis
,
R.
,
Monty
,
J. P.
,
Hutchins
,
N.
, and
Marusic
,
I.
, “
Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows
,”
Phys. Fluids
21
,
111703
(
2009
).
39.
Nadeem
,
M.
,
Lee
,
J. H.
,
Lee
,
J.
, and
Sung
,
H. J.
, “
Turbulent boundary layers over sparsely-spaced rod-roughened walls
,”
Int. J. Heat Fluid Flow
56
,
16
27
(
2015
).
40.
Nagano
,
Y.
,
Hattori
,
H.
, and
Houra
,
T.
, “
DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness
,”
Int. J. Heat Fluid Flow
25
,
393
403
(
2004
).
41.
Orlandi
,
P.
,
Bernardini
,
M.
, and
Pirozzoli
,
S.
, “
Poiseuille and Couette flows in the transitional and fully turbulent regime
,”
J. Fluid Mech.
770
,
424
441
(
2015
).
42.
Pathikonda
,
G.
, “
Structure of turbulent channel flow perturbed by cylindrical roughness elements
,” M.Sc. thesis,
Department of Aerospace Engineering, University of Illinois at Urbana-Champaign
,
2013
.
43.
Pirozzoli
,
S.
,
Bernardini
,
M.
, and
Orlandi
,
P.
, “
Large-scale motions and inner/outer layer interactions in turbulent Couette–Poiseuille flows
,”
J. Fluid Mech.
680
,
534
563
(
2011
).
44.
Pirozzoli
,
S.
,
Bernardini
,
M.
, and
Orlandi
,
P.
, “
Turbulence statistics in Couette flow at high Reynolds number
,”
J. Fluid Mech.
758
,
327
343
(
2014
).
45.
Raupach
,
M. R.
,
Antonia
,
R. A.
, and
Rajagopalan
,
S.
, “
Rough-wall turbulent boundary layers
,”
Appl. Mech. Rev.
44
,
1
25
(
1991
).
46.
Robinson
,
S. K.
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
,
601
639
(
1991
).
47.
Schultz
,
M. P.
and
Flack
,
K. A.
, “
The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime
,”
J. Fluid Mech.
580
,
381
405
(
2007
).
48.
Schultz
,
M. P.
and
Flack
,
K. A.
, “
Turbulent boundary layers on a systematically varied rough wall
,”
Phys. Fluids
21
,
015104
(
2009
).
49.
Tillmark
,
N.
, “
Experiments on transition and turbulence in plane Couette flow
,” Ph.D. thesis,
KTH Royal Institute of Technology
,
1995
.
50.
Tomkins
,
C. D.
and
Adrian
,
R. J.
, “
Spanwise structure and scale growth in turbulent boundary layers
,”
J. Fluid Mech.
490
,
37
74
(
2003
).
51.
Townsend
,
A. A.
,
The Structure of Turbulent Shear Flow
, 2nd ed. (
Cambridge University Press
,
1976
).
52.
Tsukahara
,
T.
,
Kawamura
,
H.
, and
Shingai
,
K.
, “
DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region
,”
J. Turbul.
7
,
1
16
(
2006
).
53.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
, “
Turbulence structure in a boundary layer with two-dimensional roughness
,”
J. Fluid Mech.
635
,
75
101
(
2009
).
54.
Wallace
,
J. M.
, “
Quadrant analysis in turbulence research: History and evolution
,”
Annu. Rev. Fluid Mech.
48
,
131
158
(
2016
).
55.
Wu
,
Y.
and
Christensen
,
K. T.
, “
Outer-layer similarity in the presence of a practical rough-wall topography
,”
Phys. Fluids
19
,
085108
(
2007
).
You do not currently have access to this content.