We present a method to construct reduced-order models for duct flows of Bingham media. Our method is based on proper orthogonal decomposition (POD) to find a low-dimensional approximation to the velocity and artificial neural network to approximate the coefficients of a given solution in the constructed POD basis. We use the well-established augmented Lagrangian method and finite-element discretization in the “offline” stage. We show that the resulting approximation has a reasonable accuracy, but the evaluation of the approximate solution is several orders of magnitude times faster.
REFERENCES
1.
I. A.
Frigaard
, K.
Paso
, and P.
de Souza Mendes
, “Binghams model in the oil and gas industry
,” Rheol. Acta
56
, 259
–282
(2017
). 2.
T.
Guo
, Z.
Qu
, F.
Gong
, and X.
Wang
, “Numerical simulation of hydraulic fracture propagation guided by single radial boreholes
,” Energies
10
, 1680
(2017
). 3.
A.
Shojaei
, A.
Taleghani
, and G.
Li
, “A continuum damage failure model for hydraulic fracturing of porous rocks
,” Int. J. Plast.
59
, 199
–212
(2014
). 4.
A.
Osiptsov
, “Fluid mechanics of hydraulic fracturing: A review
,” J. Petrol. Sci. Eng.
156
, 513
(2017
). 5.
A. P.
Bunger
and B.
Lecampion
, “Four critical issues for successful hydraulic fracturing applications
,” in Rock Mechanics and Engineering
, Surface and Underground Projects Vol. 5, edited by X.-T.
Feng
(CRC Press/Balkema
, 2017
), Chap. 16.6.
G.
Li
and A.
Shojaei
, “A viscoplastic theory of shape memory polymer fibres with application to self-healing materials
,” Proc. R. Soc. A
468
, 2319
–2346
(2012
). 7.
P.
Saramito
and A.
Wachs
, “Progress in numerical simulation of yield stress fluid flows
,” Rheol. Acta
56
, 211
–230
(2017
). 8.
E.
Mitsoulis
and J.
Tsamopoulos
, “Numerical simulations of complex yield-stress fluid flows
,” Rheol. Acta
56
, 231
–258
(2017
). 9.
A.
Ammar
, B.
Mokdad
, F.
Chinesta
, and R.
Keunings
, “A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
,” J. Non-Newtonian Fluid Mech.
139
, 153
–176
(2006
). 10.
F.
Chinesta
, A.
Ammar
, A.
Leygue
, and R.
Keunings
, “An overview of the proper generalized decomposition with applications in computational rheology
,” J. Non-Newtonian Fluid Mech.
166
, 578
–592
(2011
). 11.
P.
Mosolov
and V.
Miasnikov
, “Variational methods in the theory of the fluidity of a viscous-plastic medium
,” J. Appl. Math. Mech.
29
, 545
–577
(1965
). 12.
P.
Mosolov
and V.
Miasnikov
, “On stagnant flow regions of a viscous-plastic medium in pipes
,” J. Appl. Math. Mech.
30
, 841
–854
(1966
). 13.
P.
Mosolov
and V.
Miasnikov
, “On qualitative singularities of the flow of a viscoplastic medium in pipes
,” J. Appl. Math. Mech.
31
, 609
–613
(1967
). 14.
R.
Huilgol
and Z.
You
, “Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel–Bulkley fluids
,” J. Non-Newtonian Fluid Mech.
128
, 126
–143
(2005
). 15.
P.
Saramito
and N.
Roquet
, “An adaptive finite element method for viscoplastic fluid flows in pipes
,” Comput. Methods Appl. Mech. Eng.
190
, 5391
–5412
(2001
). 16.
M. A.
Moyers-Gonzalez
and I. A.
Frigaard
, “Numerical solution of duct flows of multiple visco-plastic fluids
,” J. Non-Newtonian Fluid Mech.
122
, 227
–241
(2004
). 17.
E.
Muravleva
, “Finite-difference schemes for the computation of viscoplastic medium flows in a channel
,” Math. Models Comput. Simul.
1
, 768
–279
(2009
). 18.
I. C.
Walton
and S. H.
Bittleston
, “The axial flow of a Bingham plastic in a narrow eccentric annulus
,” J. Fluid Mech.
222
, 39
–60
(1991
). 19.
P.
Szabo
and O.
Hassager
, “Flow of viscoplastic fluids in eccentric annular geometries
,” J. Non-Newtonian Fluid Mech.
45
, 149
–169
(1992
). 20.
A.
Wachs
, “Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods
,” J. Non-Newtonian Fluid Mech.
142
, 183
–198
(2007
). 21.
E. A.
Muravleva
and L. V.
Muravleva
, “Unsteady flows of a viscoplastic medium in channels
,” Mech. Solids
44
, 792
–812
(2009
). 22.
L.
Muravleva
, E.
Muravleva
, G.
Georgiou
, and E.
Mitsoulis
, “Numerical simulations of cessation flows of a Bingham plastic with the augmented Lagrangian method
,” J. Non-Newtonian Fluid Mech.
164
, 544
–550
(2010
).23.
N.
Roquet
and P.
Saramito
, “An adaptive finite element method for viscoplastic flows in a square pipe with stick–slip at the wall
,” J. Non-Newtonian Fluid Mech.
155
, 101
–115
(2008
). 24.
Y.
Damianou
, M.
Philippou
, G.
Kaoullas
, and G.
Georgiou
, “Cessation of viscoplastic Poiseuille flow with wall slip
,” J. Non-Newtonian Fluid Mech.
203
, 24
–37
(2014
). 25.
Y.
Damianou
and G.
Georgiou
, “Viscoplastic Poiseuille flow in a rectangular duct with wall slip
,” J. Non-Newtonian Fluid Mech.
214
, 88
–105
(2014
). 26.
M.
Fortin
and R.
Glowinski
, The Augmented Lagrangian Method
(North-Holland
, Amsterdam
, 1983
).27.
A.
Logg
, K.
Mardal
, and G.
Wells
, Automated Solution of Differential Equations by the Finite Element Method
(Springer
, 2012
).28.
K.
Kunisch
and S.
Volkwein
, “Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics
,” SIAM J. Numer. Anal.
40
, 492
–515
(2002
). 29.
J. S.
Peterson
, “The reduced basis method for incompressible viscous flow calculations
,” SIAM J. Sci. Stat. Comput.
10
, 777
–786
(1989
). 30.
T.
Lassila
, A.
Manzoni
, A.
Quarteroni
, and G.
Rozza
, “Model order reduction in fluid dynamics: Challenges and perspectives
,” in Reduced Order Methods for Modeling and Computational Reduction
(Springer
, 2014
), pp. 235
–273
.31.
I.
Goodfellow
, Y.
Bengio
, and A.
Courville
, Deep Learning
(MIT Press
, 2016
), http://www.deeplearningbook.org.32.
K.
Hornik
, M.
Stinchcombe
, and H.
White
, “Multilayer feedforward networks are universal approximators
,” Neural Networks
2
, 359
–366
(1989
). 33.
M.
Abadi
, A.
Agarwal
, P.
Barham
, E.
Brevdo
, Z.
Chen
, C.
Citro
, G. S.
Corrado
, A.
Davis
, J.
Dean
, M.
Devin
, S.
Ghemawat
, I.
Goodfellow
, A.
Harp
, G.
Irving
, M.
Isard
, Y.
Jia
, R.
Jozefowicz
, L.
Kaiser
, M.
Kudlur
, J.
Levenberg
, D.
Mané
, R.
Monga
, S.
Moore
, D.
Murray
, C.
Olah
, M.
Schuster
, J.
Shlens
, B.
Steiner
, I.
Sutskever
, K.
Talwar
, P.
Tucker
, V.
Vanhoucke
, V.
Vasudevan
, F.
Viégas
, O.
Vinyals
, P.
Warden
, M.
Wattenberg
, M.
Wicke
, Y.
Yu
, and X.
Zheng
, “TensorFlow: Large-scale machine learning on heterogeneous systems
,” 2015
, software available from tensorflow.org.34.
35.
H.
Niederreiter
, Random Number Generation and Quasi-Monte Carlo Methods
(SIAM
, 1992
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.