We present a method to construct reduced-order models for duct flows of Bingham media. Our method is based on proper orthogonal decomposition (POD) to find a low-dimensional approximation to the velocity and artificial neural network to approximate the coefficients of a given solution in the constructed POD basis. We use the well-established augmented Lagrangian method and finite-element discretization in the “offline” stage. We show that the resulting approximation has a reasonable accuracy, but the evaluation of the approximate solution is several orders of magnitude times faster.

1.
I. A.
Frigaard
,
K.
Paso
, and
P.
de Souza Mendes
, “
Binghams model in the oil and gas industry
,”
Rheol. Acta
56
,
259
282
(
2017
).
2.
T.
Guo
,
Z.
Qu
,
F.
Gong
, and
X.
Wang
, “
Numerical simulation of hydraulic fracture propagation guided by single radial boreholes
,”
Energies
10
,
1680
(
2017
).
3.
A.
Shojaei
,
A.
Taleghani
, and
G.
Li
, “
A continuum damage failure model for hydraulic fracturing of porous rocks
,”
Int. J. Plast.
59
,
199
212
(
2014
).
4.
A.
Osiptsov
, “
Fluid mechanics of hydraulic fracturing: A review
,”
J. Petrol. Sci. Eng.
156
,
513
(
2017
).
5.
A. P.
Bunger
and
B.
Lecampion
, “
Four critical issues for successful hydraulic fracturing applications
,” in
Rock Mechanics and Engineering
, Surface and Underground Projects Vol. 5, edited by
X.-T.
Feng
(
CRC Press/Balkema
,
2017
), Chap. 16.
6.
G.
Li
and
A.
Shojaei
, “
A viscoplastic theory of shape memory polymer fibres with application to self-healing materials
,”
Proc. R. Soc. A
468
,
2319
2346
(
2012
).
7.
P.
Saramito
and
A.
Wachs
, “
Progress in numerical simulation of yield stress fluid flows
,”
Rheol. Acta
56
,
211
230
(
2017
).
8.
E.
Mitsoulis
and
J.
Tsamopoulos
, “
Numerical simulations of complex yield-stress fluid flows
,”
Rheol. Acta
56
,
231
258
(
2017
).
9.
A.
Ammar
,
B.
Mokdad
,
F.
Chinesta
, and
R.
Keunings
, “
A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
,”
J. Non-Newtonian Fluid Mech.
139
,
153
176
(
2006
).
10.
F.
Chinesta
,
A.
Ammar
,
A.
Leygue
, and
R.
Keunings
, “
An overview of the proper generalized decomposition with applications in computational rheology
,”
J. Non-Newtonian Fluid Mech.
166
,
578
592
(
2011
).
11.
P.
Mosolov
and
V.
Miasnikov
, “
Variational methods in the theory of the fluidity of a viscous-plastic medium
,”
J. Appl. Math. Mech.
29
,
545
577
(
1965
).
12.
P.
Mosolov
and
V.
Miasnikov
, “
On stagnant flow regions of a viscous-plastic medium in pipes
,”
J. Appl. Math. Mech.
30
,
841
854
(
1966
).
13.
P.
Mosolov
and
V.
Miasnikov
, “
On qualitative singularities of the flow of a viscoplastic medium in pipes
,”
J. Appl. Math. Mech.
31
,
609
613
(
1967
).
14.
R.
Huilgol
and
Z.
You
, “
Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel–Bulkley fluids
,”
J. Non-Newtonian Fluid Mech.
128
,
126
143
(
2005
).
15.
P.
Saramito
and
N.
Roquet
, “
An adaptive finite element method for viscoplastic fluid flows in pipes
,”
Comput. Methods Appl. Mech. Eng.
190
,
5391
5412
(
2001
).
16.
M. A.
Moyers-Gonzalez
and
I. A.
Frigaard
, “
Numerical solution of duct flows of multiple visco-plastic fluids
,”
J. Non-Newtonian Fluid Mech.
122
,
227
241
(
2004
).
17.
E.
Muravleva
, “
Finite-difference schemes for the computation of viscoplastic medium flows in a channel
,”
Math. Models Comput. Simul.
1
,
768
279
(
2009
).
18.
I. C.
Walton
and
S. H.
Bittleston
, “
The axial flow of a Bingham plastic in a narrow eccentric annulus
,”
J. Fluid Mech.
222
,
39
60
(
1991
).
19.
P.
Szabo
and
O.
Hassager
, “
Flow of viscoplastic fluids in eccentric annular geometries
,”
J. Non-Newtonian Fluid Mech.
45
,
149
169
(
1992
).
20.
A.
Wachs
, “
Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods
,”
J. Non-Newtonian Fluid Mech.
142
,
183
198
(
2007
).
21.
E. A.
Muravleva
and
L. V.
Muravleva
, “
Unsteady flows of a viscoplastic medium in channels
,”
Mech. Solids
44
,
792
812
(
2009
).
22.
L.
Muravleva
,
E.
Muravleva
,
G.
Georgiou
, and
E.
Mitsoulis
, “
Numerical simulations of cessation flows of a Bingham plastic with the augmented Lagrangian method
,”
J. Non-Newtonian Fluid Mech.
164
,
544
550
(
2010
).
23.
N.
Roquet
and
P.
Saramito
, “
An adaptive finite element method for viscoplastic flows in a square pipe with stick–slip at the wall
,”
J. Non-Newtonian Fluid Mech.
155
,
101
115
(
2008
).
24.
Y.
Damianou
,
M.
Philippou
,
G.
Kaoullas
, and
G.
Georgiou
, “
Cessation of viscoplastic Poiseuille flow with wall slip
,”
J. Non-Newtonian Fluid Mech.
203
,
24
37
(
2014
).
25.
Y.
Damianou
and
G.
Georgiou
, “
Viscoplastic Poiseuille flow in a rectangular duct with wall slip
,”
J. Non-Newtonian Fluid Mech.
214
,
88
105
(
2014
).
26.
M.
Fortin
and
R.
Glowinski
,
The Augmented Lagrangian Method
(
North-Holland
,
Amsterdam
,
1983
).
27.
A.
Logg
,
K.
Mardal
, and
G.
Wells
,
Automated Solution of Differential Equations by the Finite Element Method
(
Springer
,
2012
).
28.
K.
Kunisch
and
S.
Volkwein
, “
Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics
,”
SIAM J. Numer. Anal.
40
,
492
515
(
2002
).
29.
J. S.
Peterson
, “
The reduced basis method for incompressible viscous flow calculations
,”
SIAM J. Sci. Stat. Comput.
10
,
777
786
(
1989
).
30.
T.
Lassila
,
A.
Manzoni
,
A.
Quarteroni
, and
G.
Rozza
, “
Model order reduction in fluid dynamics: Challenges and perspectives
,” in
Reduced Order Methods for Modeling and Computational Reduction
(
Springer
,
2014
), pp.
235
273
.
31.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
), http://www.deeplearningbook.org.
32.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Multilayer feedforward networks are universal approximators
,”
Neural Networks
2
,
359
366
(
1989
).
33.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
,”
2015
, software available from tensorflow.org.
34.
D.
Kingma
and
J.
Ba
, “
ADAM: A method for stochastic optimization
,” preprint arXiv:1412.6980 (
2014
).
35.
H.
Niederreiter
,
Random Number Generation and Quasi-Monte Carlo Methods
(
SIAM
,
1992
).
You do not currently have access to this content.