This study presents droplet dynamics due to capillarity-wettability interaction through a partially obstructed channel confinement based on a mesoscopic, two-phase lattice Boltzmann model. To explore the dynamic behavior of droplet motion past an obstruction, the effects of the modified capillary number and surface wettability, including the obstruction size and architecture, are elucidated. In this work, a single spherical obstruction and different spherical agglomerate structures have been considered. The mesoscale simulations exhibit interesting two-phase flow physics and pattern formations due to droplet pinching, break up, and surface adherence owing to the underlying wettability-capillarity characteristics. This study further reveals a trade-off, between the time required for the bulk droplet fluid to pass by and/or through the obstruction and the fraction of the droplet fluid volume adhering to the surface, depending on the combination of the capillary number and surface wettability.

1.
M.
Passandideh-Fard
,
M.
Bussmann
,
S.
Chandra
, and
J.
Mostaghimi
, “
Simulating droplet impact on a substrate of arbitrary shape
,”
Atomization Sprays
11
,
397
414
(
2001
).
2.
D. R.
Link
,
S. L.
Anna
,
D. A.
Weitz
, and
H. A.
Stone
, “
Geometrically mediated breakup of drops in microfluidic devices
,”
Phys. Rev. Lett.
92
,
054503
(
2004
).
3.
S.
Bakshi
,
I. V.
Roisman
, and
C.
Tropea
, “
Investigations on the impact of a drop onto a small spherical target
,”
Phys. Fluids
19
,
032102
(
2007
).
4.
C.
Chung
,
K. H.
Ahn
, and
S. J.
Lee
, “
Numerical study on the dynamics of droplet passing through a cylinder obstruction in confined microchannel flow
,”
J. Non-Newton. Fluid Mech.
162
,
38
44
(
2009
).
5.
C.
Chung
,
M.
Lee
,
K.
Char
,
K. H.
Ahn
, and
S. J.
Lee
, “
Droplet dynamics passing through obstructions in confined microchannel flow
,”
Microfluid Nanofluid
9
,
1151
(
2010
).
6.
S.
Protiere
,
M. Z.
Bazant
,
D. A.
Weitz
, and
H. A.
Stone
, “
Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations
,”
Europhys. Lett.
92
,
54002
(
2010
).
7.
M.
Do-Quang
,
A.
Carlson
, and
G.
Amberg
, “
The impact of ink-jet droplets on a paper-like structure
,”
Fluid Dyn. Mater. Process
7
,
389
402
(
2011
).
8.
J. M.
Gac
and
L.
Grado
, “
Lattice-Boltzmann modeling of collisions between droplets and particles
,”
Colloids Surf. A
441
,
831
836
(
2014
).
9.
G.
Juarez
,
T.
Gastopoulos
,
Y.
Zhang
,
M. L.
Siegel
, and
P. E.
Arratia
, “
Splash control of drop impacts with geometric targets
,”
Phys. Rev. E
85
,
026319
(
2012
).
10.
L.
Salkin
,
L.
Courbin
, and
P.
Panizza
, “
Microfluidic breakups of confined droplets against a linear obstacle: The importance of the viscosity contrast
,”
Phys. Rev. E
86
,
036317
(
2012
).
11.
J. A.
Thomas
and
A. J. H.
McGaughe
, “
Effect of surface wettability on liquid density, structure, and diffusion near a solid surface
,”
J. Chem. Phys.
126
,
034707
(
2007
).
12.
S.
Chakraborty
, “
Droplet dynamics in microchannels
,” in (
Springer
,
2015
), pp.
411
418
.
13.
K.
Chaudhury
,
S.
Mandal
, and
S.
Chakraborty
, “
Droplet migration characteristics in confined oscillatory microflows
,”
Phys. Rev. E
93
,
023106
(
2016
).
14.
A. L.
Dubov
,
S.
Schmieschek
,
E. S.
Asmolov
,
J.
Harting
, and
O. I.
Vinogradova
, “
Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane
,”
J. Chem. Phys.
140
,
034707
(
2014
).
15.
P.
Randive
,
A.
Dalal
,
K. C.
Sahu
,
G.
Biswas
, and
P. P.
Mukherjee
, “
Wettability effects on contact line dynamics of droplet motion in an inclined channel
,”
Phys. Rev. E
91
,
053006
(
2015
).
16.
B.
Nath
,
G.
Biswas
,
A.
Dalal
, and
K. C.
Sahu
, “
Migration of a droplet in a cylindrical tube in the creeping flow regime
,”
Phys. Rev. E
95
,
033110
(
2017
).
17.
R. S.
Qin
, “
Bubble formation in lattice Boltzmann immiscible shear flow
,”
J. Chem. Phys.
126
,
114506
(
2007
).
18.
X. Y.
He
,
S. Y.
Chen
, and
R. Y.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability
,”
J. Comput. Phys.
152
,
642
663
(
1999
).
19.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
,
1815
1819
(
1993
).
20.
S.
Succi
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
(
Oxford University Press
,
2001
).
21.
D. V.
Patil
and
K. N.
Lakshmisha
, “
Two-dimensional flow past circular cylinders using finite volume lattice Boltzmann formulation
,”
Int. J. Numer. Methods Fluids
69
,
1149
1164
(
2012
).
22.
Q.
Kang
,
D.
Zhang
, and
S.
Chen
, “
Displacement of a two dimensional immiscible droplet in a channel
,”
Phys. Fluids
14
,
3203
3214
(
2002
).
23.
Q.
Kang
,
D.
Zhang
, and
S.
Chen
, “
Displacement of a three dimensional immiscible droplet in a channel
,”
J. Fluid Mech.
545
,
41
66
(
2005
).
24.
A.
Fakhari
and
M. H.
Rahimian
, “
Simulation of falling droplet by the lattice Boltzmann method
,”
Commun. Nonlinear Sci. Numer. Simulat.
14
,
3046
3055
(
2009
).
25.
Q.
Li
,
Y. L.
He
,
G. H.
Tang
, and
W. Q.
Tao
, “
Lattice Boltzmann modeling of microchannel flows in the transition flow regime
,”
Microfluid Nanofluid
10
,
607
618
(
2011
).
26.
K.
Fei
,
W. H.
Chen
, and
C. W.
Hong
, “
Microfluidic analysis of CO2 bubble dynamics using thermal lattice-Boltzmann method
,”
Microfluid Nanofluid
5
,
119
129
(
2008
).
27.
L.
Hao
and
P.
Cheng
, “
Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell
,”
J. Power Sources
195
,
3870
3881
(
2010
).
28.
J.
Zhang
, “
Lattice Boltzmann method for microfluidics: Models and applications
,”
Microfluid Nanofluid
10
,
1
28
(
2011
).
29.
S. C.
Cho
,
Y.
Wang
, and
K. S.
Chen
, “
Droplet dynamics in a polymer electrolyte fuel cell gas flow channel: Forces, deformation, and detachment. I: Theoretical and numerical analyses
,”
J. Power Sources
206
,
119
128
(
2012
).
30.
S. C.
Cho
,
Y.
Wang
, and
K. S.
Chen
, “
Droplet dynamics in a polymer electrolyte fuel cell gas flow channel: Forces, deformation and detachment. II: Comparisons of analytical solution with numerical and experimental results
,”
J. Power Sources
210
,
191
197
(
2012
).
31.
P.
Randive
,
A.
Dalal
, and
P. P.
Mukherjee
, “
Probing the influence of superhydrophobicity and mixed wettability on droplet displacement behavior
,”
Microfluid Nanofluid
17
,
657
674
(
2014
).
32.
P.
Randive
and
A.
Dalal
, “
Influence of viscosity ratio and wettability on droplet displacement behavior: A mesoscale analysis
,”
Comput. Fluids
102
,
15
31
(
2014
).
33.
Y.
Fu
,
L.
Bai
,
Y.
Jin
, and
Y.
Cheng
, “
Theoretical analysis and simulation of obstructed breakup of micro-droplet in T-junction under an asymmetric pressure difference
,”
Phys. Fluids
29
,
032003
(
2017
).
34.
Q.
Li
,
Z.
Chai
,
B.
Shi
, and
H.
Liang
, “
Deformation and breakup of a liquid droplet past a solid circular cylinder: A lattice Boltzmann study
,”
Phys. Rev. E
90
,
043015
(
2014
).
35.
P. P.
Mukherjee
,
C. Y.
Wang
, and
Q.
Kang
, “
Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells
,”
Electrochim. Acta
54
,
6861
6875
(
2009
).
36.
N. S.
Martys
and
H.
Chen
, “
Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method
,”
Phys. Rev. E
53
,
743
750
(
1996
).
37.
X.
Shan
and
G.
Doolen
, “
Diffusion in a multicomponent lattice Boltzmann equation model
,”
Phys. Rev. E
54
,
3614
3620
(
1996
).
38.
S.
Bhardwaj
and
A.
Dalal
, “
Mesoscopic analysis of dynamic droplet behaviour on wetted flat and grooved surface for low viscosity ratio
,”
J. Heat Transfer
139
,
052002
(
2017
).
39.
A.
Wang
,
T.
Husar
, and
H. L.
Zhou
, “
A parametric study of PEM fuel cell performances
,”
Int. J. Hydrogen Energy
28
,
1263
1272
(
2003
).
40.
R.
Lenormand
,
E.
Touboul
, and
C.
Zarcone
, “
Numerical models and experiments on immiscible displacements in porous media
,”
J. Fluid Mech.
189
,
165
187
(
1988
).
41.
R. P.
Ewing
and
B.
Berkowitz
, “
Stochastic pore-scale growth models of DNAPL migration in porous media
,”
Adv. Water Res.
24
,
309
323
(
2001
).
42.
J. A. K.
Horwitz
,
P.
Kumar
, and
S. P.
Vanka
, “
Three-dimensional deformation of a spherical droplet in a square duct flow at moderate Reynolds numbers
,”
Int. J. Multiphase Flow
67
,
10
24
(
2014
).
You do not currently have access to this content.