This study presents the numerical simulation and optimization of a dielectrophoretic (DEP) bio-separation chip for isolating bioparticles such as circulating tumor cells. The chip consists of an array of slanted electrodes placed on the top and bottom walls of the channel with an angle of 5°, 10°, and 15° with respect to the flow direction. The spatially non-uniform electric field produced by the slanted electrodes applies a DEP force on the particles flowing through the channel. The repulsive DEP forces applied by the top and bottom electrode arrays are balanced in the normal direction (y), causing the particles to flow along the centerline of the channel. However, the lateral component (z) of the DEP force deflects particles in the lateral direction, guiding them toward different outlets based on their size. Numerical simulation of the particle-fluid transport was performed using OpenFOAM, an open-source computational fluid dynamics package. The computational model considers the dominant forces such as the DEP, hydrodynamic, and gravitational forces and simulates the deflection and trajectory of the particles within the microfluidic channel based on their size. Additionally, a parametric study was performed to investigate the effects of voltage, flow rate, number of electrode pairs, cell size, channel height, the angle of electrodes, and the width and spacing of electrodes on the separation process and to optimize the utility of the DEP devices for cell separation.

1.
T. Z.
Jubery
,
S. K.
Srivastava
, and
P.
Dutta
, “
Dielectrophoretic separation of bioparticles in microdevices: A review
,”
Electrophoresis
35
(
5
),
691
713
(
2014
).
2.
M. P.
Hughes
,
H.
Morgan
,
F. J.
Rixon
,
J. P. H.
Burt
, and
R.
Pethig
, “
Manipulation of herpes simplex virus type 1 by dielectrophoresis
,”
Biochim. Biophys. Acta (BBA) - Gen. Subj.
1425
(
1
),
119
126
(
1998
).
3.
G. H.
Markx
,
Y.
Huang
,
X.-F.
Zhou
, and
R.
Pethig
, “
Dielectrophoretic characterization and separation of micro-organisms
,”
Microbiology
140
(
3
),
585
591
(
1994
).
4.
I.
Doh
and
Y.-H.
Cho
, “
A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process
,”
Sens. Actuators, A
121
(
1
),
59
65
(
2005
).
5.
H.
Morgan
and
N. G.
Green
, “
Dielectrophoretic manipulation of rod-shaped viral particles
,”
J. Electrost.
42
(
3
),
279
293
(
1997
).
6.
N.-C.
Chen
,
C.-H.
Chen
,
M.-K.
Chen
,
L.-S.
Jang
, and
M.-H.
Wang
, “
Single-cell trapping and impedance measurement utilizing dielectrophoresis in a parallel-plate microfluidic device
,”
Sens. Actuators, B
190
,
570
577
(
2014
).
7.
R.
Hamada
,
H.
Takayama
,
Y.
Shonishi
,
L.
Mao
,
M.
Nakano
, and
J.
Suehiro
, “
A rapid bacteria detection technique utilizing impedance measurement combined with positive and negative dielectrophoresis
,”
Sens. Actuators, B
181
,
439
445
(
2013
).
8.
A.
Nakano
,
T.-C.
Chao
,
F.
Camacho-Alanis
, and
A.
Ros
, “
Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device
,”
Electrophoresis
32
(
17
),
2314
2322
(
2011
).
9.
P. R. C.
Gascoyne
,
X.-B.
Wang
,
Y.
Huang
, and
F. F.
Becker
, “
Dielectrophoretic separation of cancer cells from blood
,”
IEEE Trans. Ind. Appl.
33
(
3
),
670
678
(
1997
).
10.
F. F.
Becker
,
X.-B.
Wang
,
Y.
Huang
,
R.
Pethig
,
J.
Vykoukal
, and
P. R.
Gascoyne
, “
Separation of human breast cancer cells from blood by differential dielectric affinity
,”
Proc. Natl. Acad. Sci. U. S. A.
92
(
3
),
860
864
(
1995
).
11.
A.
Alazzam
,
I.
Stiharu
,
R.
Bhat
, and
A.-N.
Meguerditchian
, “
Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis
,”
Electrophoresis
32
(
11
),
1327
1336
(
2011
).
12.
F.
Yang
,
X.
Yang
,
H.
Jiang
,
P.
Bulkhaults
,
P.
Wood
,
W.
Hrushesky
, and
G.
Wang
, “
Dielectrophoretic separation of colorectal cancer cells
,”
Biomicrofluidics
4
(
1
),
013204
(
2010
).
13.
V.
Gupta
,
I.
Jafferji
,
M.
Garza
,
V. O.
Melnikova
,
D. K.
Hasegawa
,
R.
Pethig
, and
D. W.
Davis
, “
Apostream™, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood
,”
Biomicrofluidics
6
(
2
),
024133
(
2012
).
14.
M.
Alshareef
,
N.
Metrakos
,
E.
Juarez Perez
,
F.
Azer
,
F.
Yang
,
X.
Yang
, and
G.
Wang
, “
Separation of tumor cells with dielectrophoresis-based microfluidic chip
,”
Biomicrofluidics
7
(
1
),
011803
(
2013
).
15.
H. A.
Pohl
, in
Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields
, Cambridge Monographs on Physics (
Cambridge University Press
,
New York
,
1978
), Chaps. 1–3.
16.
A.
Lenshof
and
T.
Laurell
, “
Continuous separation of cells and particles in microfluidic systems
,”
Chem. Soc. Rev.
39
(
3
),
1203
1217
(
2010
).
17.
Y.
Ai
,
Z.
Zeng
, and
S.
Qian
, “
Direct numerical simulation of AC dielectrophoretic particle–particle interactive motions
,”
J. Colloid Interface Sci.
417
,
72
79
(
2014
).
18.
X.
Hu
,
P. H.
Bessette
,
J.
Qian
,
C. D.
Meinhart
,
P. S.
Daugherty
, and
H. T.
Soh
, “
Marker-specific sorting of rare cells using dielectrophoresis
,”
Proc. Natl. Acad. Sci. U. S. A.
102
(
44
),
15757
15761
(
2005
).
19.
R. G.
Ashcroft
and
P. A.
Lopez
, “
Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC)
,”
J. Immunol. Methods
243
(
1-2
),
13
24
(
2000
).
20.
J. J.
Chalmers
,
M.
Zborowski
,
L.
Sun
, and
M.
Lee
, “
Flow through, immunomagnetic cell separation
,”
Biotechnol. Prog.
14
(
1
),
141
148
(
1998
).
21.
R.
Pethig
and
G. H.
Markx
, “
Applications of dielectrophoresis in biotechnology
,”
Trends Biotechnol.
15
(
10
),
426
432
(
1997
).
22.
S.
Fiedler
,
S. G.
Shirley
,
T.
Schnelle
, and
G.
Fuhr
, “
Dielectrophoretic sorting of particles and cells in a microsystem
,”
Anal. Chem.
70
(
9
),
1909
1915
(
1998
).
23.
J.
McGrath
,
M.
Jimenez
, and
H.
Bridle
, “
Deterministic lateral displacement for particle separation: A review
,”
Lab Chip
14
(
21
),
4139
4158
(
2014
).
24.
A. M.
Striegel
and
A. K.
Brewer
, “
Hydrodynamic chromatography
,”
Annu. Rev. Anal. Chem.
5
,
15
34
(
2012
).
25.
C. A.
Silebi
and
J. G.
DosRamos
, “
Separation of submicrometer particles by capillary hydrodynamic fractionation (CHDF)
,”
J. Colloid Interface Sci.
130
(
1
),
14
24
(
1989
).
26.
G.
Lespes
and
J.
Gigault
, “
Hyphenated analytical techniques for multidimensional characterisation of submicron particles: A review
,”
Anal. Chim. Acta
692
(
1-2
),
26
41
(
2011
).
27.
J.
Cao
,
P.
Cheng
, and
F.
Hong
, “
A numerical analysis of forces imposed on particles in conventional dielectrophoresis in microchannels with interdigitated electrodes
,”
J. Electrost.
66
(
11-12
),
620
626
(
2008
).
28.
A.
Neculae
,
C. G.
Biris
,
M.
Bunoiu
, and
M.
Lungu
, “
Numerical analysis of nanoparticle behavior in a microfluidic channel under dielectrophoresis
,”
J. Nanopart. Res.
14
(
10
),
1154
(
2012
).
29.
S.
Dash
,
S.
Mohanty
,
S.
Pradhan
, and
B. K.
Mishra
, “
CFD design of a microfluidic device for continuous dielectrophoretic separation of charged gold nanoparticles
,”
J. Taiwan Inst. Chem. Eng.
58
,
39
48
(
2016
).
30.
B.
Mathew
,
A.
Alazzam
,
M.
Abutayeh
,
A.
Gawanmeh
, and
S.
Khashan
, “
Modeling the trajectory of microparticles subjected to dielectrophoresis in a microfluidic device for field flow fractionation
,”
Chem. Eng. Sci.
138
,
266
280
(
2015
).
31.
R.
Gerber
, “
Magnetic filtration of ultra-fine particles
,”
IEEE Trans. Magn.
20
(
5
),
1159
1164
(
1984
).
32.
E. P.
Furlani
, “
Analysis of particle transport in a magnetophoretic microsystem
,”
J. Appl. Phys.
99
(
2
),
024912
(
2006
).
33.
M.
Golozar
,
M.
Molki
, and
J.
Darabi
, “
Computational and performance analysis of a continuous magnetophoretic bioseparation chip with alternating magnetic fields
,”
Microfluid. Nanofluid.
21
(
4
),
73
(
2017
).
34.
R.
Pethig
, “
Dielectrophoresis: Status of the theory, technology, and applications
,”
Biomicrofluidics
4
(
2
),
022811
(
2010
).
35.
M.
Hejazian
,
W.
Li
, and
N.-T.
Nguyen
, “
Lab on a chip for continuous-flow magnetic cell separation
,”
Lab Chip
15
(
4
),
959
970
(
2015
).
36.
U.
Kim
,
C.-W.
Shu
,
K. Y.
Dane
,
P. S.
Daugherty
,
J. Y. J.
Wang
, and
H. T.
Soh
, “
Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
52
),
20708
20712
(
2007
).
37.
U.
Kim
,
J.
Qian
,
S. A.
Kenrick
,
P. S.
Daugherty
, and
H. T.
Soh
, “
Multitarget dielectrophoresis activated cell sorter
,”
Anal. Chem.
80
(
22
),
8656
8661
(
2008
).
38.
N.
Crews
,
J.
Darabi
,
P.
Voglewede
,
F.
Guo
, and
A.
Bayoumi
, “
An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics
,”
Sens. Actuators, B
125
(
2
),
672
679
(
2007
).
You do not currently have access to this content.