New experimental results are presented that investigate the nature of the intercomponent energy transfer that occurs in the interaction between oscillating-grid turbulence and a solid impermeable boundary, using instantaneous velocity measurements obtained from two-dimensional particle imaging velocimetry (PIV). Estimates of the pressure-strain correlation term (Πijs) of the transport equation of the Reynolds stress tensor, which represents intercomponent energy transfer, are obtained using the PIV data from a balance of the remaining terms of the transport equation. The influence of Πijs on the flow is examined by computing the energy spectra and conditional turbulent statistics associated with events in which intercomponent energy transfer is thought to be concentrated. Data reported here are in support of viscous and “return-to-isotropy” mechanisms governing the intercomponent energy transfer previously proposed, respectively, by Perot and Moin [J. Fluid Mech. 295, 199–227 (1995)] and Walker et al. [J. Fluid Mech. 320, 19–51 (1996)]. However, the data reported also indicate the presence of a weak net intercomponent energy transfer from the boundary-normal velocity components to the boundary-tangential velocity components over a thin region outside the viscous sublayer which is not captured within existing models of intercomponent energy transfer at the boundary.

1.
B.
Perot
and
P.
Moin
, “
Shear free turbulent boundary layers. Part 2. New concepts for Reynolds stress transport equation modelling of inhomogeneous flows
,”
J. Fluid Mech.
295
,
229
245
(
1995
).
2.
J. C. R.
Hunt
and
J. M. R.
Graham
, “
Free-stream turbulence near plane boundaries
,”
J. Fluid Mech.
84
(
2
),
209
235
(
1978
).
3.
B.
Perot
and
P.
Moin
, “
Shear free turbulent boundary layers. Part 1. Physical insights into near-wall turbulence
,”
J. Fluid Mech.
295
,
199
227
(
1995
).
4.
J.
Bodart
,
J. B.
Cazalbou
, and
L.
Joly
, “
Direct numerical simulation of unsheared turbulence diffusing towards a free-slip or no-slip surface
,”
J. Turbul.
11
(
48
),
1
18
(
2010
).
5.
D.
Aronson
,
A. V.
Johansson
, and
L.
Löfdahl
, “
Shear-free turbulence near a wall
,”
J. Fluid Mech.
338
,
363
395
(
1997
).
6.
I. A.
Hannoun
,
H. J. S.
Fernando
, and
E. J.
List
, “
Turbulence structure near a sharp density interface
,”
J. Fluid Mech.
189
,
189
209
(
1988
).
7.
M. W.
McCorquodale
and
R. J.
Munro
, “
Experimental study of oscillating-grid turbulence interacting with a solid boundary
,”
J. Fluid Mech.
813
,
768
798
(
2017
).
8.
J. C. R.
Hunt
, “
Turbulence structure in thermal convection and shear-free boundary layers
,”
J. Fluid Mech.
138
,
161
184
(
1984
).
9.
J.
Magnaudet
, “
High-Reynolds-number turbulence in a shear-free boundary layer: Revisiting the Hunt-Graham theory
,”
J. Fluid Mech.
484
,
167
196
(
2003
).
10.
T.
Uzkan
and
W. C.
Reynolds
, “
A shear-free turbulent boundary layer
,”
J. Fluid Mech.
28
(
4
),
803
821
(
1967
).
11.
S.
Biringen
and
W. C.
Reynolds
, “
Large-eddy simulation of the shear-free turbulent boundary layer
,”
J. Fluid Mech.
103
,
53
63
(
1981
).
12.
N. H.
Thomas
and
P. E.
Hancock
, “
Grid turbulence near a moving wall
,”
J. Fluid Mech.
82
(
3
),
481
496
(
1977
).
13.
D. T.
Walker
,
R. I.
Leighton
, and
L. O.
Garza-Rios
, “
Shear-free turbulence near a flat free surface
,”
J. Fluid Mech.
320
,
19
51
(
1996
).
14.
E. L. G.
Kit
,
E. J.
Strang
, and
H. J. S.
Fernando
, “
Measurement of turbulence near shear-free density interfaces
,”
J. Fluid Mech.
334
,
293
314
(
1997
).
15.
B. H.
Brumley
and
G. H.
Jirka
, “
Near-surface turbulence in a grid-stirred tank
,”
J. Fluid Mech.
183
,
235
263
(
1987
).
16.
M. W.
McCorquodale
, “
Interaction between oscillating-grid turbulence and a solid impermeable boundary
,” Ph.D. thesis,
University of Nottingham
,
2017
.
17.
B. J.
Hopfinger
and
J. A.
Toly
, “
Spatially decaying turbulence and its relation to mixing across density interfaces
,”
J. Fluid Mech.
78
(
1
),
155
175
(
1976
).
18.
T. J.
McDougall
, “
Measurements of turbulence in a zero-mean-shear mixed layer
,”
J. Fluid Mech.
94
(
3
),
409
431
(
1979
).
19.
S. M.
Thompson
and
J. S.
Turner
, “
Mixing across an interface due to turbulence generated by an oscillating grid
,”
J. Fluid Mech.
67
(
2
),
349
368
(
1975
).
20.
W. H. M.
Wan Mohtar
and
R. J.
Munro
, “
Threshold criteria for incipient sediment motion on an inclined bedform in the presence of oscillating-grid turbulence
,”
Phys. Fluids
25
,
015103
(
2013
).
21.
N. S.
Cheng
and
A. W. K.
Law
, “
Measurements of turbulence generated by oscillating grid
,”
J. Hydraul. Eng.
127
,
201
208
(
2001
).
22.
S.
Lucas
,
F.
Moulin
, and
K.
Guizien
, “
Oscillating grid mesocosm for studying oxygen dynamics under controlled unsteady turbulence
,”
Limnol. Oceanogr.: Methods
14
,
1
13
(
2016
).
23.
A.
Al-Homoud
and
M.
Hondzo
, “
Energy dissipation estimates in oscillating grid setup: LDV and PIV measurements
,”
Environ. Fluid Mech.
7
,
143
158
(
2007
).
24.
H. J. S.
Fernando
and
I. P. D.
De Silva
, “
Note on secondary flows in oscillating grid, mixing box experiments
,”
Phys. Fluids
5
,
1849
1851
(
1993
).
25.
I. P. D.
De Silva
and
H. J. S.
Fernando
, “
Oscillating grids as a source of nearly isotropic turbulence
,”
Phys. Fluids
6
,
2455
2464
(
1994
).
26.
J. O.
Hinze
,
Turbulence
, 2nd ed. (
McGraw-Hill
,
1975
).
27.
S. B.
Pope
,
Turbulent Flows
, 1st ed. (
Cambridge University Press
,
2000
).
28.
J. C. R.
Hunt
and
J. F.
Morrison
, “
Eddy structure in turbulent boundary layers
,”
Eur. J. Mech. B - Fluids
19
,
679
694
(
2000
).
29.
J. D. A.
Walker
,
C. R.
Smith
,
A. W.
Cerra
, and
T. L.
Doligalski
, “
The impact of a vortex ring on a wall
,”
J. Fluid Mech.
181
,
99
140
(
1987
).
30.
P.
Orlandi
and
R.
Verzicco
, “
Vortex rings impining on walls: Axisymmetric and three-dimensional simulations
,”
J. Fluid Mech.
256
,
615
646
(
1993
).
31.
R. J.
Munro
,
N.
Bethke
, and
S. B.
Dalziel
, “
Sediment resuspension and erosion by vortex rings
,”
Phys. Fluids
21
,
046601
(
2009
).
You do not currently have access to this content.