We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding , penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.
REFERENCES
1.
Abraham
, R.
, Marsden
, J.
, and Ratiu
, T.
, Manifolds, Tensor Analysis, and Applications
, Applied Mathematical Sciences Vol. 75 (Springer
, 1988
).2.
Arroyo
, M.
and DeSimone
, A.
, “Relaxation dynamics of fluid membranes
,” Phys. Rev. E
79
, 031915
(2009
).3.
Barrett
, J.
, Garcke
, H.
, and Nürnberg
, R.
, “Numerical computations of the dynamics of fluidic membranes and vesicles
,” Phys. Rev. E
92
, 052704
(2015
).4.
Barrett
, J. W.
, Garcke
, H.
, and Nürnberg
, R.
, “A stable numerical method for the dynamics of fluidic membranes
,” Numer. Math.
134
, 783
–822
(2016
).5.
Bertalmio
, M.
, Cheng
, L.-T.
, Osher
, S.
, and Sapiro
, G.
, “Variational problems and partial differential equations on implicit surfaces
,” J. Comput. Phys.
174
, 759
–780
(2001
).6.
Boozer
, A. H.
, “Physics of magnetically confined plasmas
,” Rev. Mod. Phys.
76
, 1071
–1141
(2005
).7.
Bothe
, D.
and Prüss
, J.
, “On the two-phase Navier-Stokes equations with Boussinesq-Scriven surface fluid
,” J. Math. Fluid Mech.
12
, 133
–150
(2010
).8.
Chorin
, A.
, “Numerical solution of the Navier-Stokes equations
,” Math. Comput.
22
, 745
–762
(1968
).9.
Chorin
, A.
, “On the convergence of discrete approximations to the Navier-Stokes equations
,” Math. Comput.
23
, 341
–353
(1969
).10.
Dörries
, G.
and Foltin
, G.
, “Energy dissipation of fluid membranes
,” Phys. Rev. E
53
, 2547
–2550
(1996
).11.
Dziuk
, G.
and Elliott
, C. M.
, “Finite elements on evolving surfaces
,” IMA J. Numer. Anal.
27
, 262
–292
(2007
).12.
Dziuk
, G.
and Elliott
, C. M.
, “Surface finite elements for parabolic equations
,” J. Comput. Math.
25
, 385
–407
(2007
).13.
Dziuk
, G.
and Elliott
, C. M.
, “Eulerian finite element method for parabolic PDEs on implicit surfaces
,” Interfaces Free Boundaries
10
(1
), 119
–138
(2008
).14.
Dziuk
, G.
and Elliott
, C. M.
, “Finite element methods for surface PDEs
,” Acta Numer.
22
, 289
–396
(2013
).15.
Ebin
, D. G.
and Marsden
, J.
, “Groups of diffeomorphisms and the motion of an incompressible fluid
,” Ann. Math.
92
, 102
–163
(1970
).16.
Elcott
, S.
, Tong
, Y.
, Kanso
, E.
, Schröder
, P.
, and Desbrun
, M.
, “Stable, circulation-preserving, simplicial fluids
,” ACM Trans. Graphics
26
, 4
(2007
).17.
Greer
, J. B.
, Bertozzi
, A. L.
, and Sapiro
, G.
, “Fourth order partial differential equations on general geometries
,” J. Comput. Phys.
216
, 216
–246
(2006
).18.
Hansbo
, P.
, Larson
, M. G.
, and Larsson
, K.
, “Analysis of finite element methods for vector Laplacians on surfaces
,” e-print arXiv:1610.06747 (2016
).19.
Hu
, D.
, Zhang
, P.
, and Weinan
, E.
, “Continuum theory of a moving membrane
,” Phys. Rev. E
75
, 041605
(2007
).20.
Jankuhn
, T.
, Olshanskii
, M. A.
, and Reusken
, A.
, “Incompressible fluid problems on embedded surfaces: Modeling and variational formulations
,” e-print arXiv:1702.02989 (2017
).21.
Koba
, H.
, Liu
, C.
, and Giga
, Y.
, “Energetic variational approaches for incompressible fluid systems on an evolving surface
,” Q. Appl. Math.
75
, 359
–389
(2017
).22.
Mitrea
, M.
and Taylor
, M.
, “Navier-Stokes equations on Lipschitz domains in Riemannian manifolds
,” Math. Anna.
321
, 955
–987
(2001
).23.
Miura
, T.-H.
, “On singular limit equations for incompressible fluids in moving thin domains
,” e-print arXiv:1703.09698 (2017
).24.
Mullen
, P.
, Crane
, K.
, Pavlov
, D.
, Tong
, Y.
, and Desbrun
, M.
, “Energy-preserving integrators for fluid animation
,” ACM Trans. Graphics
28
, 38
(2009
).25.
Nestler
, M.
, Nitschke
, I.
, Praetorius
, S.
, and Voigt
, A.
, “Orientational order on surfaces: The coupling of topology, geometry, and dynamics
,” J. Nonlinear Sci.
28
, 147
–191
(2018
). 26.
Nitschke
, I.
, Reuther
, S.
, and Voigt
, A.
, “Discrete exterior calculus (DEC) for the surface Navier-Stokes equation
,” in Transport Processes at Fluidic Interfaces
, edited by Bothe
, D.
and Reusken
, A.
(Springer
, 2017
), pp. 177
–197
.27.
Nitschke
, I.
, Voigt
, A.
, and Wensch
, J.
, “A finite element approach to incompressible two-phase flow on manifolds
,” J. Fluid Mech.
708
, 418
–438
(2012
).28.
Padberg-Gehle
, K.
, Reuther
, S.
, Praetorius
, S.
, and Voigt
, A.
, “Transfer operator-based extraction of coherent features on surfaces
,” in Topological Methods in Data Analysis and Visualization IV
, Theory, Algorithms, and Applications, edited by Carr
, H.
, Garth
, C.
, and Weinkauf
, T.
(Springer
, 2017
), pp. 283
–297
.29.
Rätz
, A.
and Voigt
, A.
, “PDE’s on surfaces: A diffuse interface approach
,” Commun. Math. Sci.
4
, 575
–590
(2006
).30.
Reusken
, A.
, “Analysis of trace finite element methods for surface partial differential equations
,” IMA J. Numer. Anal.
35
, 1568
–1590
(2014
).31.
Reuther
, S.
and Voigt
, A.
, “The interplay of curvature and vortices in flow on curved surfaces
,” Multiscale Model. Simul.
13
, 632
–643
(2015
).32.
Reuther
, S.
and Voigt
, A.
, “Incompressible two-phase flows with an inextensible Newtonian fluid interface
,” J. Comput. Phys.
322
, 850
–858
(2016
).33.
Sasaki
, E.
, Takehiro
, S.
, and Yamada
, M.
, “Bifurcation structure of two-dimensional viscous zonal flows on a rotating sphere
,” J. Fluid Mech.
774
, 224
–244
(2015
).34.
Scriven
, L. E.
, “Dynamics of a fluid interface equation of motion for Newtonian surface fluids
,” Chem. Eng. Sci.
12
, 98
–108
(1960
).35.
Secomb
, T. W.
and Skalak
, R.
, “Surface flow of viscoelastic membranes in viscous fluids
,” Q. J. Mech. Appl. Math.
35
, 233
–247
(1982
).36.
Stöcker
, C.
and Voigt
, A.
, “Geodesic evolution laws—A level-set approach
,” SIAM J. Imaging Sci.
1
, 379
–399
(2008
).37.
Vaxman
, A.
, Campen
, M.
, Diamanti
, O.
, Panozzo
, D.
, Bommes
, D.
, Hildebrandt
, K.
, and Ben-Chen
, M.
, “Directional field synthesis, design and processing
,” Comput. Graphics Forum
35
, 545
–572
(2016
).38.
Vey
, S.
and Voigt
, A.
, “AMDiS: Adaptive multidimensional simulations
,” Comput. Visualization Sci.
10
, 57
–67
(2007
).39.
Witkowski
, T.
, Ling
, S.
, Praetorius
, S.
, and Voigt
, A.
, “Software concepts and numerical algorithms for a scalable adaptive parallel finite element method
,” Adv. Comput. Math.
41
, 1145
–1177
(2015
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.