We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g(S). The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.

1.
Abraham
,
R.
,
Marsden
,
J.
, and
Ratiu
,
T.
,
Manifolds, Tensor Analysis, and Applications
, Applied Mathematical Sciences Vol. 75 (
Springer
,
1988
).
2.
Arroyo
,
M.
and
DeSimone
,
A.
, “
Relaxation dynamics of fluid membranes
,”
Phys. Rev. E
79
,
031915
(
2009
).
3.
Barrett
,
J.
,
Garcke
,
H.
, and
Nürnberg
,
R.
, “
Numerical computations of the dynamics of fluidic membranes and vesicles
,”
Phys. Rev. E
92
,
052704
(
2015
).
4.
Barrett
,
J. W.
,
Garcke
,
H.
, and
Nürnberg
,
R.
, “
A stable numerical method for the dynamics of fluidic membranes
,”
Numer. Math.
134
,
783
822
(
2016
).
5.
Bertalmio
,
M.
,
Cheng
,
L.-T.
,
Osher
,
S.
, and
Sapiro
,
G.
, “
Variational problems and partial differential equations on implicit surfaces
,”
J. Comput. Phys.
174
,
759
780
(
2001
).
6.
Boozer
,
A. H.
, “
Physics of magnetically confined plasmas
,”
Rev. Mod. Phys.
76
,
1071
1141
(
2005
).
7.
Bothe
,
D.
and
Prüss
,
J.
, “
On the two-phase Navier-Stokes equations with Boussinesq-Scriven surface fluid
,”
J. Math. Fluid Mech.
12
,
133
150
(
2010
).
8.
Chorin
,
A.
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
,
745
762
(
1968
).
9.
Chorin
,
A.
, “
On the convergence of discrete approximations to the Navier-Stokes equations
,”
Math. Comput.
23
,
341
353
(
1969
).
10.
Dörries
,
G.
and
Foltin
,
G.
, “
Energy dissipation of fluid membranes
,”
Phys. Rev. E
53
,
2547
2550
(
1996
).
11.
Dziuk
,
G.
and
Elliott
,
C. M.
, “
Finite elements on evolving surfaces
,”
IMA J. Numer. Anal.
27
,
262
292
(
2007
).
12.
Dziuk
,
G.
and
Elliott
,
C. M.
, “
Surface finite elements for parabolic equations
,”
J. Comput. Math.
25
,
385
407
(
2007
).
13.
Dziuk
,
G.
and
Elliott
,
C. M.
, “
Eulerian finite element method for parabolic PDEs on implicit surfaces
,”
Interfaces Free Boundaries
10
(
1
),
119
138
(
2008
).
14.
Dziuk
,
G.
and
Elliott
,
C. M.
, “
Finite element methods for surface PDEs
,”
Acta Numer.
22
,
289
396
(
2013
).
15.
Ebin
,
D. G.
and
Marsden
,
J.
, “
Groups of diffeomorphisms and the motion of an incompressible fluid
,”
Ann. Math.
92
,
102
163
(
1970
).
16.
Elcott
,
S.
,
Tong
,
Y.
,
Kanso
,
E.
,
Schröder
,
P.
, and
Desbrun
,
M.
, “
Stable, circulation-preserving, simplicial fluids
,”
ACM Trans. Graphics
26
,
4
(
2007
).
17.
Greer
,
J. B.
,
Bertozzi
,
A. L.
, and
Sapiro
,
G.
, “
Fourth order partial differential equations on general geometries
,”
J. Comput. Phys.
216
,
216
246
(
2006
).
18.
Hansbo
,
P.
,
Larson
,
M. G.
, and
Larsson
,
K.
, “
Analysis of finite element methods for vector Laplacians on surfaces
,” e-print arXiv:1610.06747 (
2016
).
19.
Hu
,
D.
,
Zhang
,
P.
, and
Weinan
,
E.
, “
Continuum theory of a moving membrane
,”
Phys. Rev. E
75
,
041605
(
2007
).
20.
Jankuhn
,
T.
,
Olshanskii
,
M. A.
, and
Reusken
,
A.
, “
Incompressible fluid problems on embedded surfaces: Modeling and variational formulations
,” e-print arXiv:1702.02989 (
2017
).
21.
Koba
,
H.
,
Liu
,
C.
, and
Giga
,
Y.
, “
Energetic variational approaches for incompressible fluid systems on an evolving surface
,”
Q. Appl. Math.
75
,
359
389
(
2017
).
22.
Mitrea
,
M.
and
Taylor
,
M.
, “
Navier-Stokes equations on Lipschitz domains in Riemannian manifolds
,”
Math. Anna.
321
,
955
987
(
2001
).
23.
Miura
,
T.-H.
, “
On singular limit equations for incompressible fluids in moving thin domains
,” e-print arXiv:1703.09698 (
2017
).
24.
Mullen
,
P.
,
Crane
,
K.
,
Pavlov
,
D.
,
Tong
,
Y.
, and
Desbrun
,
M.
, “
Energy-preserving integrators for fluid animation
,”
ACM Trans. Graphics
28
,
38
(
2009
).
25.
Nestler
,
M.
,
Nitschke
,
I.
,
Praetorius
,
S.
, and
Voigt
,
A.
, “
Orientational order on surfaces: The coupling of topology, geometry, and dynamics
,”
J. Nonlinear Sci.
28
,
147
191
(
2018
).
26.
Nitschke
,
I.
,
Reuther
,
S.
, and
Voigt
,
A.
, “
Discrete exterior calculus (DEC) for the surface Navier-Stokes equation
,” in
Transport Processes at Fluidic Interfaces
, edited by
Bothe
,
D.
and
Reusken
,
A.
(
Springer
,
2017
), pp.
177
197
.
27.
Nitschke
,
I.
,
Voigt
,
A.
, and
Wensch
,
J.
, “
A finite element approach to incompressible two-phase flow on manifolds
,”
J. Fluid Mech.
708
,
418
438
(
2012
).
28.
Padberg-Gehle
,
K.
,
Reuther
,
S.
,
Praetorius
,
S.
, and
Voigt
,
A.
, “
Transfer operator-based extraction of coherent features on surfaces
,” in
Topological Methods in Data Analysis and Visualization IV
, Theory, Algorithms, and Applications, edited by
Carr
,
H.
,
Garth
,
C.
, and
Weinkauf
,
T.
(
Springer
,
2017
), pp.
283
297
.
29.
Rätz
,
A.
and
Voigt
,
A.
, “
PDE’s on surfaces: A diffuse interface approach
,”
Commun. Math. Sci.
4
,
575
590
(
2006
).
30.
Reusken
,
A.
, “
Analysis of trace finite element methods for surface partial differential equations
,”
IMA J. Numer. Anal.
35
,
1568
1590
(
2014
).
31.
Reuther
,
S.
and
Voigt
,
A.
, “
The interplay of curvature and vortices in flow on curved surfaces
,”
Multiscale Model. Simul.
13
,
632
643
(
2015
).
32.
Reuther
,
S.
and
Voigt
,
A.
, “
Incompressible two-phase flows with an inextensible Newtonian fluid interface
,”
J. Comput. Phys.
322
,
850
858
(
2016
).
33.
Sasaki
,
E.
,
Takehiro
,
S.
, and
Yamada
,
M.
, “
Bifurcation structure of two-dimensional viscous zonal flows on a rotating sphere
,”
J. Fluid Mech.
774
,
224
244
(
2015
).
34.
Scriven
,
L. E.
, “
Dynamics of a fluid interface equation of motion for Newtonian surface fluids
,”
Chem. Eng. Sci.
12
,
98
108
(
1960
).
35.
Secomb
,
T. W.
and
Skalak
,
R.
, “
Surface flow of viscoelastic membranes in viscous fluids
,”
Q. J. Mech. Appl. Math.
35
,
233
247
(
1982
).
36.
Stöcker
,
C.
and
Voigt
,
A.
, “
Geodesic evolution laws—A level-set approach
,”
SIAM J. Imaging Sci.
1
,
379
399
(
2008
).
37.
Vaxman
,
A.
,
Campen
,
M.
,
Diamanti
,
O.
,
Panozzo
,
D.
,
Bommes
,
D.
,
Hildebrandt
,
K.
, and
Ben-Chen
,
M.
, “
Directional field synthesis, design and processing
,”
Comput. Graphics Forum
35
,
545
572
(
2016
).
38.
Vey
,
S.
and
Voigt
,
A.
, “
AMDiS: Adaptive multidimensional simulations
,”
Comput. Visualization Sci.
10
,
57
67
(
2007
).
39.
Witkowski
,
T.
,
Ling
,
S.
,
Praetorius
,
S.
, and
Voigt
,
A.
, “
Software concepts and numerical algorithms for a scalable adaptive parallel finite element method
,”
Adv. Comput. Math.
41
,
1145
1177
(
2015
).
You do not currently have access to this content.