An estimate for the scalar dissipation rate in the turbulent concentration field formed between the nozzle fluid from a round, gas‐phase, momentum‐driven, turbulent jet and the entrained reservoir fluid is studied. The results are based on the square of the concentration time derivative from high‐resolution, single‐point measurements made in the self‐similar far field of the jet at Reynolds numbers of 5000, 16 000, and 40 000. Results for the temporal behavior, mean value, and statistical properties of the estimated scalar dissipation rate are reported. Peaks in the instantaneous value of the estimated scalar dissipation rate are found to produce a significant, but not dominant, contribution to the average dissipation rate on the jet centerline. The occurrence statistics of these peaks are determined to be other than Poisson distributed. The mean width of the peaks is found to physically correspond to the Taylor scale associated with scalar dissipation, and depend on the inverse square root of the jet Reynolds number. The average estimated scalar dissipation rate is found to be independent of Reynolds number, and self‐similar in a manner that is consistent with similarity laws for the turbulent jet. The probability density function (pdf) of the estimated scalar dissipation rate is also found to be self‐similar. The compiled distributions, which are based on only one squared field gradient, deviate significantly from lognormality at small values. This result is shown to not preclude the lognormality of the distribution of the true scalar dissipation rate.

1.
G. K.
Batchelor
,
J. Fluid Mech.
5
,
113
(
1959
).
2.
H. Tennekes and J. L. Lumley, A First Course In Turbulence (MIT, Cambridge, Massachusetts, 1972).
3.
D. R.
Dowling
and
P. E.
Dimotakis
,
J. Fluid Mech.
218
,
109
(
1990
).
4.
J. O. Hinze, Turbulence, 2nd ed. (McGraw-Hill, New York, 1975), p. 46.
5.
R. A.
Antonia
,
N.
Phan-Thien
, and
A. J.
Chambers
,
J. Fluid Mech.
100
,
193
(
1980
).
6.
D. B. Lang, Ph.D. thesis, California Institute of Technology, Pasadena, 1985.
7.
I.
Wygnanski
and
H.
Fiedler
,
J. Fluid Mech.
38
,
577
(
1969
).
8.
R. A.
Antonia
,
B. R.
Satyaprakash
, and
A. K. M. F.
Hussain
,
J. Fluid Mech.
119
,
55
(
1982
).
9.
L. C.
Andrews
,
R. L.
Phillips
,
B. K.
Shivamoggi
,
J. K.
Beck
, and
M. L.
Joshi
,
Phys. Fluids A
1
,
999
(
1989
).
10.
C.
Meneveau
and
K. R.
Sreenivasan
,
J. Fluid Mech.
224
,
429
(
1991
).
11.
M.
Namazian
,
R. W.
Schefer
, and
J.
Kelly
,
Combust. Flame
74
,
147
(
1988
).
12.
L. W. B.
Browne
,
R. A.
Antonia
, and
D. A.
Shah
,
J. Fluid Mech.
179
,
307
(
1987
).
13.
S.
Tavoularis
and
S.
Corrsin
,
J. Fluid Mech.
104
,
349
(
1981
).
14.
F.
Anselmet
and
R. A.
Antonia
,
Phys. Fluids
28
,
1048
(
1985
).
15.
R. A.
Antonian
,
F.
Anselmet
, and
A. J.
Chambers
,
J. Fluid Mech.
163
,
365
(
1986
).
16.
R. A.
Antonia
and
L. W. B.
Browne
,
J. Fluid Mech.
163
,
393
(
1986
).
17.
C. H. Gibson and P. J. Masiello, in Statistical Models and Turbulence, edited by M. Rosenblatt and C. Van Atta (Springer-Verlag, New York, 1972), p. 427.
18.
K. R.
Sreenivasan
,
R. A.
Antonia
, and
H. Q.
Danh
,
Phys. Fluids
20
,
1238
(
1977
).
19.
R. Narasimha, in Proceedings of the Workshop on Turbulence at the Cross Roads, Cornell University, March 1989 (Springer-Verlag, New York, in press).
20.
C. H.
Gibson
,
G. R.
Stegun
, and
R. B.
Williams
,
J. Fluid Mech.
41
,
153
(
1970
).
21.
W. J. A.
Dahm
and
K. A.
Buch
,
Phys. Fluids A
1
,
1290
(
1989
).
22.
F. C.
Lockwood
and
H. A.
Moneib
,
Combust. Sci. Tech.
22
,
63
(
1980
).
23.
R. R.
Prasad
,
C.
Meneveau
, and
K. R.
Sreenivasan
,
Phys. Rev. Lett.
61
,
74
(
1988
).
24.
W. J. A. Dahm and K. A. Buch, in Turbulent Shear Flow 7, edited by W. C. Reynolds (Springer-Verlag, Berlin, 1991).
25.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959), Chap. 6.
26.
S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984).
27.
A. A. Townsend, The Structure of Turbulent Shear Flow (Cambridge U. P., Cambridge, 1976), pp. 339–340.
28.
R. W.
Bilger
,
Combust. Sci. Tech.
13
,
155
(
1976
).
29.
R. W.
Bilger
,
Annu. Rev. Fluid Mech.
21
,
101
(
1989
).
30.
D. R. Dowling, Ph.D. thesis, California Institute of Technology, Pasadena, 1988.
31.
D. R. Dowling and P. E. Dimotakis, in Proceedings of the First National Congresson Fluid Dynamics, Part 2 (AIAA, Washington, DC, 1988), pp. 982–988.
32.
D. R.
Dowling
,
D. B.
Lang
, and
P. E.
Dimotakis
,
Exp. Fluids
7
,
435
(
1989
).
33.
R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 3rd ed. (McGraw-Hill, New York, 1977), p. 554.
34.
C. J. Chen and W. Rodi, Vertical Turbulent Buoyant Jets: A Review of the Experimental Data (Pergamon, New York, 1980).
35.
H. Hussein (private communication).
36.
C. H.
Gibson
,
C. A.
Friehe
, and
S. O.
McConnell
,
Phys. Fluids
20
,
SI56
(
1977
).
37.
P. E.
Dimotakis
,
R. C.
Miake-Lye
, and
D. A.
Papantoniou
,
Phys. Fluids
26
,
3185
(
1983
).
38.
W. J. A. Dahm, Ph.D thesis. California Institute of Technology, Pasadena, 1985.
39.
W. J. A.
Dahm
and
P. E.
Dimotakis
,
AIAA J.
25
,
1216
(
1987
).
40.
M. G.
Mungal
and
D. K.
Hollingsworth
,
Phys. Fluids A
1
,
1615
(
1989
).
41.
D.
Papantoniou
and
E. J.
List
,
J. Fluid Mech.
209
,
151
(
1989
).
42.
J. E.
Broadwell
and
R. E.
Breidenthal
,
J. Fluid Mech.
125
,
397
(
1982
).
43.
J. E. Broadwell and G. M. Mungal, in The 22nd Symposium on Combustion (The Combustion Institute, Pittsburgh, 1988), pp. 579–587.
44.
A. Papoulis, Probability, Random Variables and Stochasic Processes, 2nd ed. (McGraw-Hill, New York, 1984), pp. 95–98, 362.
45.
P. E. Dimotakis, in Lecture Notes in Engineering, edited by R. Borghi and S. N. B. Merthy (Springer-Verlag, New York, 1989), Vol. 40.
46.
On the equivalent of Fig. 8 in Dowling,30 the data for Re0 = 16000 are in error.
47.
C. A.
Friehe
,
C. W.
Van Atta
, and
C. H.
Gibson
,
AGARD Turb. Shear Flows
,
CP-93
,
18
-
1
(
1971
).
48.
H. Liepmann (private communication);
P. G. Saffmann, in Topics in Nonlinear Physics, edited by N. Zabusky (Springer-Verlag, New York, 1968), pp. 485–614 and 567–576.
49.
M. C.
Drake
,
R. W.
Pitz
, and
W.
Shyy
,
J. Fluid Mech.
171
,
27
(
1986
).
50.
J. P. Clay, Ph.D. thesis, University of California San Diego, La Jolla, 1973.
51.
D. R.
Chapmann
,
AIAA J.
17
,
1293
(
1979
).
52.
W. K. George, in Advances in Turbulence, edited by W. K. George and R. Arndt (Hemisphere, New York, 1989), pp. 39–73.
53.
A. N.
Kolmogorov
,
J. Fluid Mech.
13
,
82
(
1962
).
54.
A. N.
Obukov
,
J. Fluid Mech.
13
,
77
(
1962
).
55.
A. S.
Gurvich
and
A. M.
Yaglom
,
Phys. Fluids
10
,
S59
(
1967
).
56.
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. II (MIT Press, Cambridge, 1975), Chap. 8, p. 615.
57.
R. Narasimha (private communication).
58.
C. H.
Gibson
,
Phys. Fluids
11
,
2305
(
1968
).
59.
N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Technology Press, Cambridge, 1949).
60.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. P., New York, 1986), pp. 417–419.
61.
P. Dimotakis (private communication).
62.
C. H.
Gibson
,
Phys. Fluids
11
,
2316
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.