The linear stability of pressure‐driven flow between a sliding inner cylinder and a stationary outer cylinder is studied numerically. Attention is restricted to axisymmetric disturbances (n=0), and asymmetric disturbances with azimuthal wave numbers n=1, 2, and 3. Neutral stability curves in the Reynolds number versus the wave‐number plane are presented as a function of the sliding velocity of the inner cylinder for select values of the radius ratio κ. Overall, the sliding velocity of the inner cylinder has a net stabilizing effect on all modes studied. Results presented for κ=2 show that individual disturbance modes can be completely stabilized by increasing the sliding velocity. In particular, when the sliding velocity is approximately 25% of the maximum Poiseuille velocity, the neutral curve for the n=2 mode vanishes; at 36% of the maximum Poiseuille velocity, the neutral curve for the n=0 mode vanishes, and at 65%, the neutral curve for the n=1 mode vanishes. For a stationary inner cylinder the asymmetric modes are generally the least stable, though this conclusion does depend on the magnitude of κ. As κ→1 the axisymmetric mode is found to be the most dangerous.

1.
P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge U.P., Cambridge, MA, 1981).
2.
Z.
Tadmor
and
R. B.
Bird
,
Polym. Eng. Sci.
14
,
124
(
1974
).
3.
K.
Chida
,
S.
Sakaguchi
,
M.
Wagatsuma
, and
T.
Kimura
,
Electron. Lett.
18
,
714
(
1982
).
4.
A.
Panoliaskos
,
W. L. H.
Hallett
, and
I.
Garis
,
Appl. Opt.
24
,
2309
(
1985
).
5.
M. C.
Potter
,
J. Fluid Mech.
24
,
609
(
1966
).
6.
F. D.
Hains
,
Phys. Fluids
10
,
2079
(
1967
).
7.
W. C.
Reynolds
and
M. C.
Potter
,
J. Fluid Mech.
27
,
465
(
1967
).
8.
S. J.
Cowley
and
F. T.
Smith
,
J. Fluid Mech.
156
,
83
(
1985
).
9.
J. E.
Mott
and
D. D.
Joseph
,
Phys. Fluids
11
,
2065
(
1968
).
10.
R. Mahedevan and G. M. Lilley, AGARD Conf. Proc. No. 224, Paper No. 9, 1977.
11.
L. S.
Yao
and
B. B.
Rogers
,
J. Fluid Mech.
201
,
279
(
1989
).
12.
D. D.
Joseph
and
S.
Carmi
,
Q. Appl. Math.
26
,
575
(
1968
).
13.
R.
Hanks
,
AIChE J.
9
,
45
(
1963
).
14.
S. G.
Yiantsios
and
B. G.
Higgins
,
J. Comput. Phys.
74
,
25
(
1988
).
15.
S. G.
Yiantsios
and
B. G.
Higgins
,
Phys. Fluids
31
,
3225
(
1988
).
16.
B. S.
Ng
and
W. H.
Reid
,
J. Comput. Phys.
30
,
125
(
1979
).
17.
V. M. Sadeghi, Ph.D. thesis, University of California, Davis, 1991.
18.
B. S.
Ng
and
W. H.
Reid
,
J. Comput. Phys.
58
,
209
(
1985
).
19.
S. A.
Orszag
,
J. Fluid Mech.
50
,
689
(
1971
).
20.
J. E. Mott, Ph.D. thesis, University of Minnesota, 1965.
21.
C. C. Lin, The Theory of Hydrodynamic Stability (Cambridge U.P., Cambridge, MA, 1966), p. 59.
22.
D. D. Joseph, Stability of Fluid Motions I (Springer-Verlag, Berlin, 1976).
This content is only available via PDF.
You do not currently have access to this content.