Flow visualization studies of a lid‐driven cavity (LDC) with a small amount of throughflow reveal multiple steady states at low cavity Reynolds numbers. These results show that the well‐known LDC flow, which consists of a primary eddy and secondary corner eddies, is only locally stable, becomes globally unstable, and competes with at least three other steady states before being replaced by a time‐periodic flow. The small amount of throughflow present in this system seems to have no qualitative effect on the fluid flow characteristics. These observations suggest that multiple stable steady states may also exist in closed LDC’s. Since stability properties of the closed LDC flows are virtually unexplored, we interpret our flow visualization results by first proposing an expected behavior of an idealized (free‐slip end walls) LDC and then treating the problem at hand as a perturbation of the ideal case. The results also suggest that there are nonunique and competing sequences of transitions that lead the flow in a LDC from laminar steady state toward turbulence.

1.
C. K. Aidun and N. G. Triantafillopoulos, in International Symposium on Mechanics of Thin-Film Coating, Spring National Meeting of the AIChE, 18–22 March, 1990.
2.
G. L. Booth and N. Millman, TAPPI Ser. No. 28, New York, 1965.
3.
J. K. Carpenter and P. H. Steen, in International Symposium on Mechanics of Thin-Film Coating, Spring National Meeting of the AIChE, 18–22 March, 1990.
4.
N. G.
Triantafillopoulos
and
C. K.
Aidun
,
TAPPI J.
73
,
129
(
1990
).
5.
F. R.
Pranckh
, and
L. E.
Scriven
,
TAPPI J.
73
,
163
(
1990
).
6.
B. G. Higgins, Dynamics of Coating, Adhesion and Wetting, Status Report Project 3328, The Institute of Paper Chemistry (now Institute of Paper Science and Technology), 24 March 1982.
7.
O. R.
Burggraf
,
J. Fluid Mech.
24
,
113
(
1966
).
8.
F.
Pan
and
A.
Acrivos
,
J. Fluid Mech.
28
,
643
(
1967
).
9.
L.
Prandtl
,
NACA Tech. Memo.
452
,
1904
.
10.
G. K.
Batchelor
,
J. Fluid Mech.
1
,
177
(
1956
).
11.
U.
Ghia
,
K. N.
Ghia
, and
C. T.
Shin
,
J. Comput. Phys.
48
,
387
(
1982
).
12.
R.
Schreiber
and
H. B.
Keller
,
J. Comput. Phys.
49
,
310
(
1983
).
13.
M. C.
Thompson
and
J. H.
Ferziger
,
J. Comput. Phys.
82
,
94
(
1989
).
14.
(a)
J. R.
Koseffand
,
R. L.
Street
,
J. Fluid Eng.
106
,
21
(
1984
);
(b)
J. R.
Koseff
and
R. L.
Street
,
J. Fluid Eng.
106
,
385
(
1984
);
(c)
J. R.
Koseff
and
R. L.
Street
,
J. Fluid Eng.
106
,
390
(
1984
).
15.
A. K.
Prasad
and
J. R.
Koseff
,
Phys. Fluids A
1
,
208
(
1989
).
16.
V. Ya.
Bogatyrev
and
A. V.
Gorin
,
Fluid Mech. Sov. Res.
7
,
101
(
1978
).
17.
J.
Kim
and
P.
Moin
,
J. Comput. Phys.
59
,
308
(
1985
).
18.
C. J.
Freitas
,
R. L.
Street
,
A. N.
Findikakis
, and
J. R.
Koseff
,
Int. J. Num. Methods Fluids
5
,
561
(
1985
).
19.
C. J.
Freitas
and
R. L.
Street
,
Int. J. Num. Methods Fluids
8
,
769
(
1988
).
20.
C.-Y.
Perng
and
R. L.
Street
,
Int. J. Num. Methods Fluids
9
,
341
(
1989
).
21.
R.
Iwatsu
,
K.
Ishii
,
T.
Kawamura
,
K.
Kuwahara
, and
M.
Hyun
,
Fluid Dyn. Res.
5
,
173
(
1989
).
22.
H. C.
Ku
,
R. S.
Hirsh
, and
T. D.
Taylor
,
J. Comput. Phys.
70
,
439
(
1987
).
23.
M. D.
Neary
and
K. D.
Stephanoff
,
Phys. Fluids
30
,
2936
(
1987
).
24.
N. K.
Ghaddar
,
K. Z.
Korczak
,
B. B.
Mikic
, and
A. T.
Patera
,
J. Fluid Mech.
163
,
99
(
1986
).
25.
C. H.
Amon
and
A. T.
Patera
,
Phys. Fluids A
1
,
2006
(
1989
).
26.
D. R.
Carlson
,
S. E.
Windall
, and
M. F.
Peeters
,
J. Fluid Mech.
121
,
487
(
1982
).
27.
G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge U.P., New York, 1967).
28.
H. S.
Rhee
,
J. R.
Koseff
, and
R. L.
Street
,
Exp. Fluids
2
,
57
(
1984
).
29.
A. E.
Perry
and
M. S.
Chong
,
Annu. Rev. Fluid Mech.
19
,
125
(
1987
).
30.
A. K. Prasad, C. Y. Perng, and J. R. Koseff, AIAA Paper No. 88–3654-CP, 1988, p. 288.
31.
J. D.
Bozeman
and
C.
Dalton
,
J. Comput. Phys.
12
,
348
(
1973
).
32.
M.
Nallasamy
and
K.
Krishna Prasad
,
J. Fluid Mech.
79
,
391
(
1977
).
33.
C. K. Aidun, Bifurcation Phenomena in Thermal Processes and Convection, edited by H. H. Bau, L. A. Bertram, and S. A. Korpela (ASME-AMD, New York, 1987), Vol. 89, p. 31.
34.
U. T.
Bödewadt
,
Z. Angew. Math. Mech.
20
,
241
(
1940
).
35.
H. Schlichting, Boundary-Layer Theory, 7th ed. (McGraw-Hill, New York, 1979), p. 225.
36.
G.
de Vahl Davis
and
G. D.
Mallinson
,
Comput. Fluids
4
,
29
(
1976
).
37.
J.
Serrin
,
Arch. Rat. Mech. Anal.
3
,
1
(
1959
).
38.
T. B.
Benjamin
,
Math. Proc. Cambridge Philos. Soc.
79
,
373
(
1976
).
39.
H. Peerhossaini and J. E. Wesfreid, in Propagation in Systems Far from Equilibrium (Springer-Verlag, New York, 1988).
This content is only available via PDF.
You do not currently have access to this content.