One major drawback of the eddy viscosity subgrid‐scale stress models used in large‐eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input apriori. The model is based on an algebraic identity between the subgrid‐scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid‐scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near‐wall region of a turbulent boundary layer. The results of large‐eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.

1.
J.
Smagorinsky
,
Mon. Weather Rev.
91
,
99
(
1963
).
2.
D. K.
Lilly
,
NCAR Manuscript
123
,
1966
.
3.
J. W.
Deardorff
,
J. Fluid Mech.
41
,
453
(
1970
).
4.
O. J.
McMillan
,
J. H.
Ferziger
, and
R. S.
Rogallo
,
AIAA Paper
No.
80
-
1339
,
1980
.
5.
P. J.
Mason
and
N. S.
Callen
,
J. Fluid Mech.
162
,
439
(
1986
).
6.
U.
Piomelli
,
P.
Moin
, and
J. H.
Ferziger
,
Phys. Fluids
31
,
1884
(
1988
).
7.
P.
Moin
and
J.
Kim
,
J. Fluid Mech.
118
,
341
(
1982
).
8.
E. R.
Van Driest
,
J. Aeronaut. Sci.
23
,
1007
(
1956
).
9.
A.
Yakhot
,
S. A.
Orszag
,
V.
Yakhot
, and
M.
Israeli
,
J. Sci. Comput.
4
,
139
(
1989
).
10.
V.
Yakhot
and
S. A.
Orszag
,
J. Sci. Comput.
1
,
3
(
1986
).
11.
U.
Piomelli
,
T. A.
Zang
,
C. G.
Speziale
, and
M. Y.
Hussaini
,
Phys. Fluids A
2
,
257
(
1990
).
12.
U.
Piomelli
and
T. A.
Zang
,
Comput. Phys. Commun.
65
,
224
(
1991
).
13.
U.
Piomelli
,
W. H.
Cabot
,
P.
Moin
, and
S.
Lee
,
Phys. Fluids A
3
,
1766
(
1991
).
14.
M.
Germano
,
CTR Manuscript
116
,
1990
.
15.
J.
Kim
,
P.
Moin
, and
R. D.
Moser
,
J. Fluid Mech.
177
,
133
(
1987
). The high Reynolds number DNS was performed after the publication of Ref. 11; the same numerical method used for the lower Reynolds number case was employed, and 256×193×192 grid points were used to give the same resolution, in wall units, of the lower Reynolds number case.
16.
T. A. Zang, N. Gilbert, and L. Kleiser, in Instability and Transition, edited by M. Y. Hussaini and R. G. Voigt (Springer-Verlag, New York, 1990), pp. 283–299.
17.
T. A. Zang and M. Y. Hussaini, in Nonlinear Wave Interactions in Fluids, edited by R. W. Miksad, T. R. Akylas, and T. Herbert (ASME, New York, 1987), pp. 131–145.
This content is only available via PDF.
You do not currently have access to this content.