Linear‐eddy modeling is a method for simulating molecular mixing on a one‐dimensional domain imbedded in a turbulent flow. This method is used to investigate the stochastic geometry of scalar interfaces. Simulated interfaces (i.e., scalar level sets) in a domain with a spatially uniform mean scalar gradient are found to exhibit fractal structure with respect to the absolute level, but not with respect to the level referenced to its local mean value. Implications regarding the interpretation of measured fractal properties are discussed.

1.
P. L.
Miller
and
P. E.
Dimotakis
,
Phys. Fluids A
3
,
168
(
1991
).
2.
(a)
K. R.
Sreenivasan
,
R.
Ramshankar
, and
C.
Meneveau
,
Proc. R. Soc. London Ser. A
421
,
79
(
1989
)
(b)
K. R.
Sreenivasan
and
R. R.
Prasad
,
Physica D
38
,
322
(
1989
);
(c)
R. R.
Prasad
and
K. R.
Sreenivasan
,
Phys. Fluids A
2
,
792
(
1990
).
3.
A. R. Kerstein, J. Fluid Mech., in press.
4.
A. R.
Kerstein
,
Combust. Sci. Technol.
60
,
391
(
1988
).
A. R.
Kerstein
,
Combust. Flame
75
,
397
(
1989
);
A. R.
Kerstein
,
J. Fluid Mech.
216
,
411
(
1990
);
submitted to Combust. Sci. Technol.
5.
J. O. Hinze, Turbulence, 2nd ed. (McGraw-Hill, New York, 1975).
6.
H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT, Cambridge, MA, 1972).
7.
M. Lesieur, Turbulence in Fluids (Martinus Nijhoff, Dordrecht, 1987).
8.
B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
9.
E. Vanmarcke, Random Fields: Analysis and Synthesis (MIT, Cambridge, MA, 1983).
This content is only available via PDF.
You do not currently have access to this content.