The dynamics of Lagrangian particles in a complex geometry is studied, both experimentally and through a full numerical simulation of the Navier–Stokes equations. The geometry is an annulus whose walls can be rotated independently. Stationary cylindrical rods can be positioned within the annulus in several arrangements. A variety of heteroclinic orbits are found at low Reynolds numbers, where the fluid flow is steady. As the flow becomes unsteady to a time‐periodic (two‐dimensional) state, it spontaneously gives rise to heteroclinic tangles that provide the organizing structure for the chaotic motion of fluid particles.

1.
J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport (Cambridge U. P., Cambridge, 1989).
2.
H.
Aref
,
J. Fluid Mech.
143
,
1
(
1984
).
3.
D. V.
Khakhar
,
H.
Rising
, and
J. M.
Ottino
,
J. Fluid Mech.
172
,
419
(
1986
).
4.
H.
Aref
and
S.
Balachandar
,
Phys. Fluids
29
,
3515
(
1986
).
5.
J.
Chaiken
,
R.
Chevray
,
M.
Tabor
, and
Q. M.
Tan
,
Proc. R. Soc. London Ser. A
408
,
165
(
1986
).
6.
J. M.
Ottino
,
C. W.
Leong
,
H.
Rising
, and
P. D.
Swanson
,
Nature
333
,
419
(
1988
).
7.
T. H.
Solomon
and
J. P.
Gollub
,
Phys. Rev. A
38
,
6280
(
1988
).
8.
C. W.
Leong
and
J. M.
Ottino
,
J. Fluid Mech.
209
,
463
(
1989
).
9.
V.
Rom-Kedar
,
A.
Leonard
, and
S.
Wiggins
,
J. Fluid Mech.
214
,
347
(
1990
).
10.
R.
Camassa
and
S.
Wiggins
,
Phys. Rev. A
43
,
774
(
1991
).
11.
T.
Dombre
,
U.
Frisch
,
J. M.
Greene
,
M.
Henon
,
A.
Mehr
, and
A. M.
Soward
,
J. Fluid Mech.
167
,
353
(
1986
).
12.
A. E.
Perry
and
M. S.
Chong
,
J. Fluid Mech.
173
,
207
(
1986
).
13.
D. J.
Tritton
,
J. Fluid Mech.
45
,
203
(
1971
).
14.
G. E.
Karniadakis
and
G. S.
Triantafyllou
,
J. Fluid Mech.
199
,
441
(
1989
).
15.
G. E.
Karniadakis
,
B. B.
Mikic
, and
A. T.
Patera
,
J. Fluid Mech.
192
,
365
(
1988
);
M. F.
Schatz
,
R. P.
Tagg
,
H. L.
Swinney
,
P. F.
Fischer
, and
A. T.
Patera
,
Phys. Rev. Lett.
66
,
1579
(
1991
).
16.
Handbook of Chemistry and Physics, 54th ed. (CRC, Cleveland, 1974).
17.
A. T.
Patera
,
J. Comput. Phys.
54
,
468
(
1984
).
18.
G. E. Karniadakis, E. T. Bullister, and A. T. Patera, in Finite Element Methods for Nonlinear Problems (Springer-Verlag, New York, 1985), p. 803.
19.
G. E.
Karniadakis
,
Appl. Num. Math.
6
,
85
(
1989
).
20.
V.
O’Brien
,
Phys. Fluids
24
,
1005
(
1981
).
21.
R. S.
MacKay
,
J. D.
Meiss
, and
I. C.
Percival
,
Physica D
13
,
55
(
1984
).
22.
V.
Rom-Kedar
and
S.
Wiggins
,
Arch. Rat. Mech. Anal.
109
,
239
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.