Variational bounds have been used to estimate the fluid permeability of one‐phase flow in porous media. Here an extension of this idea to foam flow in porous media is discussed.

1.
S.
Prager
,
Phys. Fluids
4
,
1477
(
1961
).
2.
H. L.
Weissberg
and
S.
Prager
,
Phys. Fluids
13
,
2958
(
1970
).
3.
J. G.
Berryman
and
G. W.
Milton
,
J. Chem. Phys.
83
,
754
(
1985
).
4.
M.
Doi
,
J. Phys. Soc. Jpn.
40
,
567
(
1976
).
5.
J.
Rubinstein
and
S.
Torquato
,
J. Fluid Mech.
206
,
25
(
1989
).
6.
J. G.
Berryman
,
J. Comput. Phys.
52
,
142
(
1983
).
7.
S. Torquato, Ph.D. thesis, State University of New York at Stony Brook, 1980.
8.
J. Bear, Introduction to Modeling of Transport Phenomena in Porous Media (Kluwer Academic, Dordrecht, The Netherlands, 1990).
9.
P. M.
Adler
and
H.
Brenner
,
Annu. Rev. Fluid Mech.
20
,
35
(
1988
).
10.
J.
Ratulowski
and
H.-C.
Chang
,
Phys. Fluids A
1
,
1642
(
1989
).
11.
E. B.
Dussan V.
and
S. H.
Davis
,
J. Fluid Mech.
173
,
115
(
1986
).
12.
P. J.
Haley
and
M. J.
Miksis
,
Phys. Fluids A
3
,
487
(
1991
).
13.
E. B.
Dussan V.
,
Annu. Rev. Fluid Mech.
11
,
371
(
1979
).
14.
S. H.
Davis
,
J. Fluid Mech.
98
,
225
(
1980
).
15.
E. B.
Dussan V.
,
Arch. Rat. Mech. Anal.
57
,
373
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.