A rigorous expression is derived that relates exactly the static fluid permeability k for flow through porous media to the electrical formation factor F (inverse of the dimensionless effective conductivity) and an effective length parameter L, i.e., k=L2/8F. This length parameter involves a certain average of the eigenvalues of the Stokes operator and reflects information about electrical and momentum transport. From the exact relation for k, a rigorous upper bound follows in terms of the principal viscous relation time Θ1 (proportional to the inverse of the smallest eigenvalue): k≤νΘ1/F, where ν is the kinematic viscosity. It is also demonstrated that νΘ1DT1, where T1 is the diffusion relaxation time for the analogous scalar diffusion problem and D is the diffusion coefficient. Therefore, one also has the alternative bound kDT1/F. The latter expression relates the fluid permeability on the one hand to purely diffusional parameters on the other. Finally, using the exact relation for the permeability, a derivation of the approximate relation k≂Λ2/8F postulated by Johnson etal. [Phys. Rev. Lett. 57, 2564 (1986)] is given.

1.
See, for example, A. E. Scheidegger, The Physics of Flow Through Porous Media (Univ. of Toronto Press, Toronto, 1974).
2.
H.
Hasimoto
,
J. Fluid Mech.
5
,
317
(
1959
);
A. A.
Zick
and
G. M.
Homsy
,
J. Fluid Mech.
83
,
13
(
1982
);
A. S.
Sangani
and
A.
Acrivos
,
Int. J. Multiphase Flow
8
,
343
(
1982
).
3.
H. C.
Brinkman
,
Appl. Sci. Res. A
1
,
27
(
1947
);
S.
Childress
,
J. Chem. Phys.
56
,
2527
(
1972
);
E. J.
Hinch
,
J. Fluid Mech.
83
,
695
(
1977
);
J.
Koplik
,
J. Fluid Mech.
119
,
219
(
1982
); ,
J. Fluid Mech.
D.
Wilkinson
,
Phys. Fluids
28
,
1015
(
1985
).
4.
S.
Prager
,
Phys. Fluids
4
,
1477
(
1961
);
J. G.
Berryman
and
G. W.
Milton
,
J. Chem. Phys.
83
,
754
(
1985
);
S.
Torquato
and
S. D.
Beasley
,
Phys. Fluids
30
,
633
(
1987
).
5.
J.
Rubinstein
and
S.
Torquato
,
J. Fluid Mech.
206
,
25
(
1989
).
6.
A. H.
Thompson
,
Phys. Rev. B
34
,
8179
(
1986
).
7.
D. L.
Johnson
,
J.
Koplik
, and
L. M.
Schwartz
,
Phys. Rev. Lett.
57
,
2564
(
1986
).
8.
D. L.
Johnson
,
I.
Koplik
, and
R.
Dashen
,
J. Fluid Mech.
176
,
379
(
1987
).
9.
P.
Sheng
and
M. Y.
Zhou
,
Phys. Rev. Lett.
61
,
1591
(
1988
);
M. Y.
Zhou
and
P.
Sheng
,
Phys. Rev. B
39
,
12027
(
1989
).
10.
C.
Straley
,
A.
Matteson
,
S.
Feng
,
L. M.
Schwartz
,
W. E.
Kenyon
, and
J. R.
Banavar
,
Appl. Phys. Lett.
51
,
1146
(
1987
);
J. R.
Banavar
and
L. M.
Schwartz
,
Phys. Rev. Lett.
58
,
1411
(
1987
).
11.
A. H.
Thompson
,
S. W.
Sinton
,
S. L.
Huft
,
A. J.
Katz
,
R. A.
Raschke
, and
G. A.
Gist
,
J. Appl. Phys.
65
,
3259
(
1989
).
12.
S.
Torquato
,
Phys. Rev. Lett.
64
,
2644
(
1990
).
13.
D. J. Wilkinson, D. L. Johnson, and L. M. Schwartz, Phys. Rev. B (in press).
14.
S.
Torquato
and
M.
Avellaneda
,
J. Chem. Phys.
95
,
6477
(
1991
).
15.
S.
Torquato
,
Appl. Mech. Rev.
44
,
37
(
1991
).
16.
R. Temam, Navier-Stokes Equations (North-Holland, New York, 1979).
17.
See Theorem 1.4 of Chap. 1 of Ref. 16.
18.
B. Sanchez-Palencia, Nonhamogeneous Media and Vibration Theory, Lecture Notes in Physics, edited by L. Tarter (Springer-Verlag, New York 1980), Vol. 127;
L. Tartar, Appendix 2.
19.
R. Courant and D. Hubert, Methods of Mathematical Physics (Interscience, New York, 1966).
20.
J.
Rubinstein
and
S.
Torquato
,
J. Chem. Phys.
88
,
6372
(
1988
).
21.
W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1950), Vol. 2, p. 420, Theorem 1.
22.
For simplicity, this mathematical approximation excludes the presence of sharp edges or singularities on the pore surface, as well as factal pore surfaces.
23.
M. P. DoCarmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs, NJ, 1976).
This content is only available via PDF.
You do not currently have access to this content.