The viscous flow over a thick permeable circular disk in the Reynolds number (Re) range of 10 to 130 and in the Darcy number (Da) range of 10−9 to 1 is examined. Direct numerical simulations are performed on a 2D grid with axisymmetric boundary conditions. Three flow regimes are observed: I, II, and III. In regime I (effectively impervious; Da<106), the wake is characterized by the presence of a toroidal vortex whose length is approximately equal to that of an impervious disk. In regime II (transition; 106<Da<103), the increase in Da causes the vortex to shorten and move downstream and eventually vanishes at a critical Darcy number Dac. Regime III (Da>103) is the highly permeable regime, in which there is no recirculation. In I, good agreement with existing experimental data for impervious disks is found. In III, an analytical expression for the drag force on the disk is derived, showing good agreement with the numerical results. A global upper limit of Dac=Damax above which the disk is unable to maintain a recirculating wake for any Re is identified. Finally, in regime II, it is demonstrated that increasing the permeability can lead to large variations in the length of the recirculating wake but with minimal effect on the drag coefficient even when Da>Damax. This has important implications in our understanding of the locomotive strategies adopted by organisms that use porous bodies for movement.

1.
M.
Le Bars
and
M. G.
Worster
, “
Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification
,”
J. Fluid Mech.
550
,
149
173
(
2006
).
2.
P.
Yu
,
T. S.
Lee
,
Y.
Zeng
, and
H. T.
Low
, “
Fluid dynamics and oxygen transport in a micro-bioreactor with a tissue engineering scaffold
,”
Int. J. Heat Mass Transfer
52
,
316
327
(
2009
).
3.
J. H.
Masliyah
and
M.
Polikar
, “
Terminal velocity of porous spheres
,”
Can. J. Chem. Eng.
58
,
299
302
(
1980
).
4.
P. D.
Noymer
,
L. R.
Glicksman
, and
A.
Devendran
, “
Drag on a permeable cylinder in steady flow at moderate Reynolds numbers
,”
Chem. Eng. Sci.
53
,
2859
2869
(
1998
).
5.
V.
Casseau
,
G.
De Croon
,
D.
Izzo
, and
C.
Pandolfi
, “
Morphologic and aerodynamic considerations regarding the plumed seeds of tragopogon pratensis and their implications for seed dispersal
,”
PLoS One
10
,
e0125040
(
2015
).
6.
P.
Yu
,
Y.
Zeng
,
T.
Lee
,
H.
Bai
, and
H.
Low
, “
Wake structure for flow past and through a porous square cylinder
,”
Int. J. Heat Fluid Flow
31
,
141
153
(
2010
).
7.
P.
Yu
,
Y.
Zeng
,
T. S.
Lee
,
X. B.
Chen
, and
H. T.
Low
, “
Steady flow around and through a permeable circular cylinder
,”
Comput. Fluids
42
,
1
12
(
2011
).
8.
P.
Yu
,
Y.
Zeng
,
T. S.
Lee
,
X. B.
Chen
, and
H. T.
Low
, “
Numerical simulation on steady flow around and through a porous sphere
,”
Int. J. Heat Fluid Flow
36
,
142
152
(
2012
).
9.
C.
Ellington
, “
Wing mechanics and take-off preparation of thrips (Thysanoptera)
,”
J. Exp. Biol.
85
,
129
136
(
1980
).
10.
E.
Barta
and
D.
Weihs
, “
Creeping flow around a finite row of slender bodies in close proximity
,”
J. Fluid Mech.
551
,
1
17
(
2006
).
11.
S.
Taddei
,
C.
Manes
, and
B.
Ganapathisubramani
, “
Characterisation of drag and wake properties of canopy patches immersed in turbulent boundary layers
,”
J. Fluid Mech.
798
,
27
49
(
2016
).
12.
G.
Neale
,
N.
Epstein
, and
W.
Nader
, “
Creeping flow relative to permeable spheres
,”
Chem. Eng. Sci.
28
,
1865
1874
(
1973
).
13.
M.
Liu
,
C.
Xie
,
M.
Yao
, and
J.
Yang
, “
Study on the near wake of a honeycomb disk
,”
Exp. Therm. Fluid Sci.
81
,
33
42
(
2017
).
14.
W. W.
Willmarth
,
N. E.
Hawk
, and
R. L.
Harvey
, “
Steady and unsteady motions and wakes of freely falling disks
,”
Phys. Fluids
7
,
197
(
1964
).
15.
F. W.
Roos
and
W. W.
Willmarth
, “
Some experimental results on sphere and disk drag
,”
AIAA J.
9
,
285
291
(
1971
).
16.
S. B.
Field
,
M.
Klaus
,
M.
Moore
, and
F.
Nori
, “
Chaotic dynamics of falling disks
,”
Nature
388
,
252
254
(
1997
).
17.
P. C.
Fernandes
,
F.
Risso
,
P.
Ern
, and
J.
Magnaudet
, “
Oscillatory motion and wake instability of freely rising axisymmetric bodies
,”
J. Fluid Mech.
573
,
479
502
(
2007
).
18.
A.
Shenoy
and
C.
Kleinstreuer
, “
Flow over a thin circular disk at low to moderate Reynolds numbers
,”
J. Fluid Mech.
605
,
253
262
(
2008
).
19.
D.
Fabre
,
F.
Auguste
, and
J.
Magnaudet
, “
Bifurcations and symmetry breaking in the wake of axisymmetric bodies
,”
Phys. Fluids
20
,
051702
(
2008
).
20.
F.
Auguste
,
D.
Fabre
, and
J.
Magnaudet
, “
Bifurcations in the wake of a thick circular disk
,”
Theor. Comput. Fluid Dyn.
24
,
305
313
(
2010
).
21.
Z.-G.
Feng
and
E. E.
Michaelides
, “
Motion of a permeable sphere at finite but small Reynolds numbers
,”
Phys. Fluids
10
,
1375
1383
(
1998
).
22.
I.
Castro
, “
Wake characteristics of two-dimensional perforated plates normal to an air-stream
,”
J. Fluid Mech.
46
,
599
609
(
1971
).
23.
T.-C.
Jue
, “
Numerical analysis of vortex shedding behind a porous square cylinder
,”
Int. J. Numer. Methods Heat Fluid Flow
14
,
649
663
(
2004
).
24.
X.
Chen
,
P.
Yu
,
S.
Winoto
, and
H.-T.
Low
, “
Numerical analysis for the flow past a porous square cylinder based on the stress-jump interfacial-conditions
,”
Int. J. Numer. Methods Heat Fluid Flow
18
,
635
655
(
2008
).
25.
A.
Cheer
and
M.
Koehl
, “
Paddles and rakes: Fluid flow through bristled appendages of small organisms
,”
J. Theor. Biol.
129
,
17
39
(
1987
).
26.
M.
Koehl
, “
The morphology and performance of suspension-feeding appendages
,”
J. Theor. Biol.
105
,
1
11
(
1983
).
27.
S.
Sunada
,
H.
Takashima
,
T.
Hattori
,
K.
Yasuda
, and
K.
Kawachi
, “
Fluid-dynamic characteristics of a bristled wing
,”
J. Exp. Biol.
205
,
2737
2744
(
2002
).
28.
P. C.
Carman
, “
Fluid flow through granular beds
,”
Trans. Inst. Chem. Eng.
15
,
150
166
(
1937
).
29.
J.
Kozeny
,
Über kapillare Leitung des Wassers im Boden: (Aufstieg, Versickerung und Anwendung auf die Bewässerung)
(
Hölder-Pichler-Tempsky
,
1927
).
30.
D. R.
Arcas
and
L. G.
Redekopp
, “
Aspects of wake vortex control through base blowing/suction
,”
Phys. Fluids
16
,
452
456
(
2004
).
31.
I.
Viola
,
P.
Bot
, and
M.
Riotte
, “
On the uncertainty of CFD in sail aerodynamics
,”
Int. J. Numer. Methods Fluids
72
,
1146
1164
(
2013
).
32.
P. J.
Roache
, “
Verification of codes and calculations
,”
AIAA J.
36
,
696
702
(
1998
).
You do not currently have access to this content.