The propulsive performance of two flapping foils with the tandem configuration has been analysed. The trajectories of the foils are prescribed with typical propulsive motions. The hind foil performs oscillatory motion in the wake of the fore foil. The local flow around the hind foil and the effective attack angle have been changed by the vortex street. The velocity potential theory and the boundary element method are introduced to study the interactions of the vortices and the foils. The propulsive performance of the tandem flapping foils is affected significantly when various longitudinal distances and phase differences are adopted. The typical vortex interaction modes are investigated in terms of global phase shift. The thrust coefficient and the propulsive efficiency of tandem NACA0012 foils at typical global phases are analysed. The optimal global phase shifts for the highest thrust and highest efficiency have been found.

1.
M. J.
Lighthill
, “
Aquatic animal propulsion of high hydromechanical efficiency
,”
J. Fluid Mech.
44
,
265
(
1970
).
2.
M. S.
Triantafyllou
,
G. S.
Triantafyllou
, and
D. K. P.
Yue
, “
Hydrodynamics of fishlike swimming
,”
Annu. Rev. Fluid Mech.
32
,
33
(
2000
).
3.
J. M.
Anderson
,
K.
Streitlien
,
D. S.
Barrett
, and
M. S.
Triantafyllou
, “
Oscillating foils of high propulsive efficiency
,”
J. Fluid Mech.
360
,
41
(
1998
).
4.
G. D.
Xu
and
G. X.
Wu
, “
Boundary element simulation of inviscid flow around an oscillatory foil with vortex sheet
,”
Eng. Anal. Boundary Elem.
37
,
825
(
2013
).
5.
M. S.
Triantafyllou
,
F. S.
Hover
,
A. H.
Techet
, and
D. K. P.
Yue
, “
Review of hydrodynamic scaling laws in aquatic locomotion and fishlike swimming
,”
Appl. Mech. Rev.
58
,
226
(
2005
).
6.
D.
Weihs
, “
Hydromechanics of fish schooling
,”
Nature
241
,
290
(
1973
).
7.
B. L.
Partridge
and
T. J.
Pitcher
, “
Evidence against a hydrodynamic function for fish schools
,”
Nature
279
(
5712
),
418
(
1979
).
8.
J.
Deng
,
X.-M.
Shao
, and
Z.-S.
Yu
, “
Hydrodynamic studies on two traveling wavy foils in tandem arrangement
,”
Phys. Fluids
19
,
113104
(
2007
).
9.
R.
Gopalkrishnan
,
M. S.
Triantafyllou
,
G. S.
Triantafyllou
, and
D.
Barrett
, “
Active vorticity control in a shear flow using a flapping foil
,”
J. Fluid Mech.
274
,
1
(
1994
).
10.
J. C.
Liao
,
D. N.
Beal
,
G. V.
Lauder
, and
M. S.
Triantafyllou
, “
Fish exploiting vortices decrease muscle activity
,”
Science
302
,
1566
(
2003
).
11.
D. N.
Beal
,
F. S.
Hover
,
M. S.
Triantafyllou
 et al, “
Passive propulsion in vortex wakes
,”
J. Fluid Mech.
549
,
385
(
2006
).
12.
X.
Shao
,
D.
Pan
,
J.
Deng
, and
Z. S.
Yu
, “
Hydrodynamic performance of a fish like undulating foil in the wake of a cylinder
,”
Phys. Fluids
22
(
11
),
111903
(
2010
).
13.
A. P.
Maertens
,
A.
Gao
, and
M. S.
Triantafyllou
, “
Optimal undulatory swimming for a single fish-like body and for a pair of interacting swimmers
,”
J. Fluid Mech.
813
,
301
(
2017
).
14.
T.
Kinsey
and
G.
Dumas
, “
Optimal tandem configuration for oscillating-foils hydrokinetic turbine
,”
J. Fluids Eng.
134
,
031103
(
2012
).
15.
M. A.
Ashraf
,
J.
Young
, and
J. C. S.
Lai
, “
Reynolds number, thickness and camber effects on flapping airfoil propulsion
,”
J. Fluids Struct.
27
,
145
(
2011
).
16.
Y.
Pan
,
X.
Dong
,
Q.
Zhu
, and
D. K. P.
Yue
, “
Boundary-element method for the prediction of performance of flapping foils with leading-edge separation
,”
J. Fluid Mech.
698
,
446
(
2012
).
17.
M. S.
Triantafyllou
,
G. S.
Triantafyllou
, and
R.
Gopalkrishnan
, “
Wake mechanism of thrust generation in oscillating foils
,”
Phys. Fluids A
3
,
2835
(
1991
).
18.
K.
Streitlien
,
G. S.
Triantafyllou
, and
M. S.
Triantafyllou
, “
Efficient foil propulsion through vortex control
,”
AIAA J.
34
,
2315
(
1996
).
19.
G. D.
Xu
and
W. H.
Xu
, “
Energy extraction of two flapping foils with tandem configurations and vortex interactions
,”
Eng. Anal. Boundary Elem.
82
,
202
(
2017
).
20.
F. S.
Hover
,
Ø.
Haugsdal
, and
M. S.
Triantafyllou
, “
Effect of angle of attack profiles in flapping foil propulsion
,”
J. Fluids Struct.
19
,
37
(
2004
).
You do not currently have access to this content.