A new geometric disturbance giving the reductions of the drag and lift fluctuations for bluff body flows has been proposed by applying the asymmetry to a symmetric wavy (SW) geometry. This asymmetric wavy (ASW) disturbance is applied on a circular cylinder to identify its effect on the flow control, forming the asymmetric wavy (ASW) cylinder. The turbulent flow over an ASW cylinder is investigated at a subcritical Reynolds number of 3000 using large eddy simulation based on the finite volume method. The findings of the present study identify that the ASW disturbance achieves more reductions in the mean drag and the lift fluctuation than the optimal wavy cylinder. The branch-like formation of the additional streamwise and transverse vorticities observed in the ASW cylinder are dissipated farther upstream than the symmetric wavy (SW) cylinder, resulting in wider regions of the zero vorticities in the near-wake. The ASW cylinder formed the asymmetric distribution of flow and the extent of the coherent flow farther downstream. The vortex formation length of the ASW cylinder reveals the asymmetric distribution along the span and is much longer than that of the smooth and SW cylinders. This comparison of the vortex formation length also proves the capacity of the ASW geometric disturbance to reduce the drag and lift fluctuation than the SW cylinder.

1.
H.
Choi
,
W. P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
139
(
2008
).
2.
W.
Kim
,
J.
Lee
, and
H.
Choi
, “
Flow past a helically twisted elliptic cylinder
,” in
Proceedings of the 8th KSME-JSME Thermal and Fluids Engineering Conference
,
Songdo, Incheon
,
2012
, GSF28–008.
3.
W.
Kim
,
J.
Lee
, and
H.
Choi
, “
Flow around a helically twisted elliptic cylinder
,”
Phys. Fluids
28
,
053602
(
2016
).
4.
D.
Wei
,
H.
Yoon
, and
J.
Jung
, “
Characteristics of aerodynamic forces exerted on a twisted cylinder at a low Reynolds number of 100
,”
Comput. Fluids
136
,
456
466
(
2016
).
5.
J.
Jung
and
H.
Yoon
, “
Large eddy simulation of flow over a twisted cylinder at a subcritical Reynolds number
,”
J. Fluid Mech.
759
,
579
611
(
2014
).
6.
M. M.
Zdravkovich
, “
Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding
,”
J. Wind Eng. Ind. Aerodyn.
7
,
145
189
(
1981
).
7.
E.
Naudascher
and
D.
Rockwell
,
Flow-Induced Vibrations: An Engineering Guide
(
Dover
, 2012).
8.
A.
Ekmekci
and
D.
Rockwell
, “
Effect of a geometrical surface disturbance on flow past a circular cylinder: A large-scale spanwise wire
,”
J. Fluid Mech.
665
,
120
157
(
2010
).
9.
J.
Gerrard
, “
The three-dimensional structure of the wake of a circular cylinder
,”
J. Fluid Mech.
25
,
143
164
(
1966
).
10.
C. H. K.
Williamson
, “
Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
206
,
579
627
(
1989
).
11.
H.
Eisenlohr
and
H.
Eckelmann
, “
Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds numbers
,”
Phys. Fluids A
1
,
189
192
(
1989
).
12.
M.
Hammache
and
M.
Gharib
, “
An experimental study of the parallel and oblique shedding from circular cylinders
,”
J. Fluid Mech.
232
,
567
590
(
1991
).
13.
J. C.
Owen
,
P. W.
Bearman
, and
A. A.
Szewczyk
, “
Passive control of VIV with drag reduction
,”
J. Fluids Struct.
15
,
597
605
(
2001
).
14.
H.
Park
,
D.
Lee
,
W. P.
Jeon
,
S.
Hahn
,
J.
Kim
,
J.
Kim
,
J.
Choi
, and
H.
Choi
, “
Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device
,”
J. Fluid Mech.
563
,
389
414
(
2006
).
15.
A.
Ahmed
,
M. J.
Khan
, and
B.
Bays-Muchmore
, “
Experimental investigation of a three-dimensional bluff-body wake
,”
AIAA J.
31
,
559
563
(
1993
).
16.
K.
Lam
and
Y. F.
Lin
, “
Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers
,”
J. Fluid Mech.
620
,
195
220
(
2009
).
17.
Y. F.
Lin
,
H. L.
Bai
,
M. M.
Alam
,
W. G.
Zhang
, and
K.
Lam
, “
Effects of large spanwise wavelength on the wake of a sinusoidal wavy cylinder
,”
J. Fluids Struct.
61
,
392
409
(
2016
).
18.
A.
Ahmed
and
B.
Bays-Muchmore
, “
Transverse flow over a wavy cylinder
,”
Phys. Fluids A
4
,
1959
1967
(
1992
).
19.
K.
Lam
,
F. H.
Wang
,
J. Y.
Li
, and
R. M. C.
So
, “
Experimental investigation of the mean and fluctuating forces of wavy (varicose) cylinders in a cross-flow
,”
J. Fluids Struct.
19
,
321
334
(
2004
).
20.
K.
Lam
,
F. H.
Wang
, and
R. M. C.
So
, “
Three-dimensional nature of vortices in the near wake of a wavy cylinder
,”
J. Fluids Struct.
19
,
815
833
(
2004
).
21.
S. J.
Lee
and
A. T.
Nguyen
, “
Experimental investigation on wake behind a wavy cylinder having sinusoidal cross-sectional area variation
,”
Fluid Dyn. Res.
39
,
292
304
(
2007
).
22.
W.
Zhang
,
Daichin
, and
S. J.
Lee
, “
PIV measurements of the near-wake behind a sinusoidal cylinder
,”
Exp. Fluids
38
,
824
832
(
2005
).
23.
C. Y.
Xu
,
L.
Chen
, and
X.
Lu
, “
Large-eddy simulation of the compressible flow past a wavy cylinder
,”
J. Fluid Mech.
665
,
238
273
(
2010
).
24.
K.
Lam
and
Y. F.
Lin
, “
Drag force control of flow over wavy cylinders at low Reynolds number
,”
J. Mech. Sci. Technol.
21
,
1331
1337
(
2007
).
25.
K.
Lam
and
Y. F.
Lin
, “
Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number
,”
Int. J. Heat Fluid Flow
29
,
1071
1088
(
2008
).
26.
N.
Schulte-Pelkum
,
S.
Wieskotten
,
W.
Hanke
,
G.
Dehnhardt
, and
B.
Mauck
, “
Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina)
,”
J. Exp. Biol.
210
,
781
787
(
2007
).
27.
W.
Hanke
,
M.
Witte
,
L.
Miersch
,
M.
Brede
,
J.
Oeffner
,
M.
Michael
,
F.
Hanke
,
A.
Leder
, and
G.
Dehnhardt
, “
Harbor seal vibrissa morphology suppresses vortex-induced vibrations
,”
J. Exp. Biol.
213
,
2665
2672
(
2010
).
28.
H.
Hans
,
J.
Miao
,
G.
Weymouth
, and
M.
Triantafyllou
, “
Whisker-like geometries and their force reduction properties
,”
OCEANS-Bergen MTS/IEEE
,
1
7
(
2013
).
29.
S.
Wang
and
Y.
Liu
, “
Wake dynamics behind a seal-vibrissa-shaped cylinder: A comparative study by time-resolved particle velocimetry measurements
,”
Exp. Fluids
57
,
32
(
2016
).
30.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
1765
(
1991
).
31.
D. K.
Lilly
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids
4
,
633
635
(
1992
).
32.
H.
Yoon
,
S.
Balachandar
, and
M. Y.
Ha
, “
Large eddy simulation of flow in an unbaffled stirred tank for different Reynolds numbers
,”
Phys. Fluids
21
,
085102
(
2009
).
33.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vorticies in channel flow
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
34.
C.
Norberg
, “
Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder
,” Publication 87/2, Department of Applied Thermodynamics and Fluid Mechanics, Chalmers University of Technology, 1987.
35.
C.
Norberg
, “
Fluctuating lift on a circular cylinder: Review and new measurements
,”
J. Fluids Struct.
17
,
57
96
(
2003
).
36.
C.
Norberg
, “
LDV-measurements in the near wake of a circular cylinder
,” in
Proceedings of the ASME Fluids Engineering Division Summer Meeting
(
ASME Paper
,
Washington, DC
,
1998
).
37.
R. M.
Darekar
and
S. J.
Sherwin
, “
Flow past a square-section cylinder with a wavy stagnation face
,”
J. Fluid Mech.
426
,
263
295
(
2000
).
38.
J. C.
Lin
,
J.
Towfighi
, and
D.
Rockwell
, “
Instantaneous structure of the near-wake of a circular cylinder: On the effect of Reynolds number
,”
J. Fluids Struct.
9
,
409
418
(
1995
).
39.
J.
Wu
,
J.
Sheridan
, and
M. C.
Welsh
, “
Velocity perturbations induced by the longitudinal vortices in a cylinder wake
,”
Trans. ASME: J. Fluids Eng.
118
,
531
536
(
1996
).
40.
J. Z.
Wu
,
X. Y.
Lu
, and
L. X.
Zhuang
, “
Integral force acting on a body due to local flow structures
,”
J. Fluid Mech.
576
,
265
286
(
2007
).
41.
P. W.
Bearman
, “
Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates
,”
J. Fluid Mech.
21
,
241
255
(
1965
).
42.
N.
Tombazis
and
P. W.
Berman
, “
A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance
,”
J. Fluid Mech.
330
,
85
112
(
1997
).
43.
S.
Szepessy
, “
On the spanwise correlation of vortex shedding from a circular cylinder at high Reynolds number
,”
Phys. Fluids
6
,
2406
2416
(
1994
).
You do not currently have access to this content.