It has been known over several decades that canonical wall-bounded internal flows of a pipe and channel share flow similarities, in particular, close to the wall due to the negligible curvature effect. In the present study, direct numerical simulations of fully developed turbulent pipe and channel flows are performed to investigate the influence of the superhydrophobic surfaces (SHSs) on the turbulence dynamics and the resultant drag reduction (DR) of the flows under similar conditions. SHSs at the wall are modeled in spanwise-alternating longitudinal regions with a boundary with no-slip and shear-free conditions, and the two parameters of the spanwise periodicity (P/δ) and SHS fraction (GF) within a pitch are considered. It is shown, in agreement with previous investigations in channels, that the turbulent drag for the pipe and channel flows over SHSs is continuously decreased with increases in P/δ and GF. However, the DR rate in the pipe flows is greater than that in the channel flows with an accompanying reduction of the Reynolds stress. The enhanced performance of the DR for the pipe flow is attributed to the increased streamwise slip and weakened Reynolds shear stress contributions. In addition, a mathematical analysis of the spanwise mean vorticity equation suggests that the presence of a strong secondary flow due to the increased spanwise slip of the pipe flows makes a greater negative contribution of advective vorticity transport than the channel flows, resulting in a higher DR value. Finally, an inspection of the origin of the mean secondary flow in turbulent flows over SHSs based on the spatial gradients of the turbulent kinetic energy demonstrates that the secondary flow is both driven and sustained by spatial gradients in the Reynolds stress components, i.e., Prandtl’s secondary flow of the second kind.

1.
Adrian
,
R. J.
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids
19
,
041301
(
2007
).
2.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
3.
Aghdam
,
S. K.
and
Ricco
,
P.
, “
Laminar and turbulent flows over hydrophobic surfaces with shear-dependent slip length
,”
Phys. Fluids
28
,
035109
(
2016
).
4.
Akselvoll
,
K.
and
Moin
,
P.
, Report No. TF-63,
Thermoscience Division, Department of Mechanical Engineering, Stanford University
,
1995
.
5.
Aljallis
,
E.
,
Sarshar
,
M. A.
,
Datla
,
R.
,
Sikka
,
V.
,
Jones
,
A.
, and
Choi
,
C.-H.
, “
Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow
,”
Phys. Fluids
25
,
025103
(
2013
).
6.
Anderson
,
W.
,
Barros
,
J. M.
,
Christensen
,
K. T.
, and
Awasthi
,
A.
, “
Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness
,”
J. Fluid Mech.
768
,
316
347
(
2015
).
7.
Belyaev
,
A. V.
and
Vinogradova
,
O. I.
, “
Effective slip in pressure-driven flow past superhydrophobic stripes
,”
J. Fluid Mech.
652
,
489
499
(
2010
).
8.
Brundrett
,
E.
and
Baines
,
W. D.
, “
The production and diffusion of vorticity in duct flow
,”
J. Fluid Mech.
19
(
03
),
375
394
(
1964
).
9.
Busse
,
A.
and
Sandham
,
N. D.
, “
Influence of an anisotropic slip-length boundary condition on turbulent channel flow
,”
Phys. Fluids
24
,
055111
(
2012
).
10.
Busse
,
A.
,
Sandham
,
N. D.
,
Mchale
,
G.
, and
Newton
,
M. I.
, “
Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealized superhydrophobic surface
,”
J. Fluid Mech.
727
,
488
508
(
2013
).
11.
Cassie
,
A. B. D.
and
Baxter
,
S.
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
12.
Chin
,
C.
,
Philip
,
J.
,
Klewicki
,
J.
,
Ooi
,
A.
, and
Marusic
,
I.
, “
Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows
,”
J. Fluid Mech.
757
,
747
769
(
2014
).
13.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
, “
Direct numerical simulation of turbulent flow over riblets
,”
J. Fluid Mech.
255
,
503
539
(
1993
).
14.
Daniello
,
R. J.
,
Waterhouse
,
N. E.
, and
Rothstein
,
J. P.
, “
Drag reduction in turbulent flows over superhydrophobic surfaces
,”
Phys. Fluids
21
,
085103
(
2009
).
15.
Deck
,
S.
,
Renard
,
N.
,
Laraufie
,
R.
, and
Weiss
,
P. É.
, “
Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to 13 650
,”
J. Fluid Mech.
743
,
202
248
(
2014
).
16.
Fukagata
,
K.
,
Iwamoto
,
K.
, and
Kasagi
,
N.
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
L76
(
2002
).
17.
Fukagata
,
K.
,
Kasagi
,
N.
, and
Koumoutsakos
,
P.
, “
A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces
,”
Phys. Fluids
18
(
5
),
051703
(
2006
).
18.
Goldstein
,
D.
and
Tuan
,
T. C.
, “
Secondary flow induced by riblets
,”
J. Fluid Mech.
363
,
115
151
(
1998
).
19.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
, “
Direct numerical simulation of turbulent flow over a modelled riblet covered surface
,”
J. Fluid Mech.
302
,
333
376
(
1995
).
20.
Hinze
,
J. O.
, “
Secondary currents in wall turbulence
,”
Phys. Fluids
10
,
S122
S125
(
1967
).
21.
Jang
,
S. J.
,
Sung
,
H. J.
, and
Krogstad
,
P. Å.
, “
Effects of an axisymmetric contraction on a turbulent pipe flow
,”
J. Fluid Mech.
687
,
376
(
2011
).
22.
Jelly
,
T. O.
,
Jung
,
S. Y.
, and
Zaki
,
T. A.
, “
Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture
,”
Phys. Fluids
26
,
095102
(
2014
).
23.
Jimenez
,
J.
and
Pinelli
,
A.
, “
The autonomous cycle of near-wall turbulence
,”
J. Fluid Mech.
389
,
335
359
(
1999
).
24.
Jung
,
T.
,
Choi
,
H.
, and
Kim
,
J.
, “
Effects of the air layer of an idealized superhydrophobic surface on the slip length and skin-friction drag
,”
J. Fluid Mech.
790
,
R1
(
2016
).
25.
Kametani
,
Y.
and
Fukagata
,
K.
, “
Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction
,”
J. Fluid Mech.
681
,
154
172
(
2011
).
26.
Kim
,
K.
,
Baek
,
S.-J.
, and
Sung
,
H. J.
, “
An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations
,”
Int. J. Numer. Methods Fluids
38
,
125
138
(
2002
).
28.
Klewicki
,
J. C.
,
Murray
,
J. A.
, and
Falco
,
R. E.
, “
Vortical motion contributions to stress transport in turbulent boundary layers
,”
Phys. Fluids
6
(
1
),
277
286
(
1994
).
29.
Lauga
,
E.
and
Stone
,
H. A.
, “
Effective slip in pressure-driven Stokes flow
,”
J. Fluid Mech.
489
,
55
77
(
2003
).
30.
Lee
,
J.
,
Jelly
,
T. O.
, and
Zaki
,
T. A.
, “
Effect of Reynolds number on turbulent drag reduction by superhydrophobic surface textures
,”
Flow, Turbul. Combust.
95
(
2-3
),
277
300
(
2015
).
31.
Lumley
,
J. L.
, “
Drag reduction in turbulent flow by polymer additives
,”
J. Polym. Sci. D: Macromol. Rev.
7
,
263
(
1973
).
32.
Martell
,
M. B.
,
Perot
,
J. B.
, and
Rothstein
,
J. P.
, “
Direct numerical simulations of turbulent flows over superhydrophobic surfaces
,”
J. Fluid Mech.
620
,
31
41
(
2009
).
33.
Min
,
T.
and
Kim
,
J.
, “
Effect of superhydrophobic surfaces on skin-friction drag
,”
Phys. Fluids
16
,
L55
(
2004
).
34.
Monty
,
J. P.
,
Stewart
,
J. A.
,
Williams
,
R. C.
, and
Chong
,
M. S.
, “
Large-scale features in turbulent pipe and channel flows
,”
J. Fluid Mech.
589
,
147
156
(
2007
).
35.
Monty
,
J. P.
,
Hutchins
,
N.
,
Ng
,
H. C. H.
,
Marusic
,
I.
, and
Chong
,
M. S.
, “
A comparison of turbulent pipe, channel and boundary layer flows
,”
J. Fluid Mech.
632
,
431
442
(
2009
).
36.
Ng
,
T. S.
,
Lawrence
,
C. J.
, and
Hewitt
,
G. F.
, “
Interface shapes for two-phase laminar stratified flow in a circular pipe
,”
Int. J. Multiphase Flow
27
(
7
),
1301
1311
(
2001
).
37.
Park
,
H.
,
Park
,
H.
, and
Kim
,
J.
, “
A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow
,”
Phys. Fluids
25
,
110815
(
2013
).
38.
Park
,
H.
,
Sun
,
G.
, and
Kim
,
C.-J.
, “
Superhydrophobic turbulent drag reduction as a function of surface grating parameters
,”
J. Fluid Mech.
747
,
722
734
(
2014
).
39.
Peguero
,
C.
and
Breuer
,
K.
, “
On drag reduction in turbulent channel flow over superhydrophobic surfaces
,”
Advances in Turbulence XII
(
Springer Berlin Heidelberg
,
2009
), pp.
233
236
.
40.
Perkins
,
R. M.
, “
PIV measurements of turbulent flow in a rectangular channel over superhydrophobic surfaces with riblets
,” All Theses and Dissertations, 5547,
Brigham Young University
,
2014
.
41.
Philip
,
J. R.
, “
Flows satisfying mixed no-slip and no-shear conditions
,”
Z. Angew. Math. Phys.
23
,
353
372
(
1972
).
42.
Prandtl
,
L.
,
Essentials of Fluid Dynamics
(
Blackie
,
1952
).
43.
Rastegari
,
A.
and
Akhavan
,
R.
, “
On the mechanism of turbulent drag reduction with superhydrophobic surfaces
,”
J. Fluid Mech.
773
,
R4
(
2015
).
44.
Reynolds
,
W. C.
and
Hussain
,
A. K. M. F.
, “
The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments
,”
J. Fluid Mech.
54
(
02
),
263
288
(
1972
).
45.
Robinson
,
S. K.
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
,
601
39
(
1991
).
46.
Seo
,
J.
,
Garcia-Mayoral
,
R.
, and
Mani
,
A.
, “
Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces
,”
J. Fluid Mech.
783
,
448
473
(
2015
).
47.
Seo
,
J.
and
Mani
,
A.
, “
On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces
,”
Phys. Fluids
28
,
025110
(
2016
).
48.
Stroh
,
A.
,
Hasegawa
,
Y.
,
Kriegseis
,
J.
, and
Frohnapfel
,
B.
, “
Secondary vortices over surfaces with spanwise varying drag
,”
J. Turbul.
17
(
12
),
1142
1158
(
2016
).
49.
Tennekes
,
H.
and
Lumley
,
J. L.
,
A First Course in Turbulence
(
MIT Press
,
1972
).
50.
Tomkins
,
C. D.
and
Adrian
,
R. J.
, “
Spanwise structure and scale growth in turbulent boundary layers
,”
J. Fluid Mech.
490
,
37
74
(
2003
).
51.
Türk
,
S.
,
Daschiel
,
G.
,
Stroh
,
A.
,
Hasegawa
,
Y.
, and
Frohnapfel
,
B.
, “
Turbulent flow over superhydrophobic surfaces with streamwise grooves
,”
J. Fluid Mech.
747
,
186
217
(
2014
).
52.
Watanabe
,
K.
,
Udagawa
Y., and Udagawa
, H.
, “
Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall
,”
J. Fluid Mech.
381
,
225
238
(
1999
).
53.
Watanabe
,
S.
,
Mamori
,
H.
, and
Fukagata
,
K.
, “
Drag-reducing performance of obliquely aligned superhydrophobic surface in turbulent channel flow
,”
Fluid Dyn. Res.
49
(
2
),
025501
(
2017
).
54.
Wei
,
T.
and
Willmarth
,
W. W.
, “
Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows
,”
J. Fluid Mech.
245
,
619
641
(
1992
).
55.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J.
, and
McMurtry
,
P.
, “
Properties of the mean momentum balance in turbulent boundary layer, pipe, and channel flows
,”
J. Fluid Mech.
522
,
303
327
(
2005
).
56.
Wu
,
X.
,
Baltzer
,
J. R.
, and
Adrian
,
R. J.
, “
Direct numerical simulation of a 30R long turbulent pipe flow at R+ = 685: Large- and very large-scale motions
,”
J. Fluid Mech.
698
,
235
(
2012
).
57.
Yoon
,
M.
,
Ahn
,
J.
,
Hwang
,
J.
, and
Sung
,
H. J.
, “
Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows
,”
Phys. Fluids
28
(
8
),
081702
(
2016
).
58.
Zhang
,
J.
,
Tian
,
H.
,
Yao
,
Z.
,
Hao
,
P.
, and
Jiang
,
N.
, “
Evolutions of hairpin vortexes over a superhydrophobic surface in turbulent boundary layer flow
,”
Phys. Fluids
28
,
095106
(
2016
).
59.
Zhao
,
J.
,
Du
,
X.
, and
Shi
,
X.
, “
Experimental research on friction-reduction with super-hydrophobic surfaces
,”
J. Mar. Sci. Appl.
6
,
58
61
(
2007
).
60.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
, “
Mechanisms for generating coherent packets of hairpin vortices
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
You do not currently have access to this content.