This work experimentally investigates the dynamics of interaction between a propagating vortex ring and density stratified interface of finite thickness. The flow evolution has been quantified using a high speed shadowgraph technique and particle image velocimetry. The spatial and temporal behaviours of the vortex in the near and far field of the interface and the plume structure formed due to buoyancy are investigated systematically by varying the vortex strength (Reynolds number, Re) and the degree of stratification (Atwood number, At). Maximum penetration length (Lpmax) of the vortex ring through the interface is measured over a range of Reynolds (1350 ≤ Re ≤ 4600) and Richardson (0.1 ≤ Ri ≤ 4) numbers. It is found that for low Froude number values, the maximum penetration length varies linearly with the Froude number as in the study of Orlandi et al. [“Vortex rings descending in a stratified fluid,” Phys. Fluids 10, 2819–2827 (1998)]. However, for high Reynolds and Richardson numbers (Ri), anomalous behaviour in maximum penetration is observed. The Lpmax value is used to characterize the vortex-interface interactions into non-penetrative, partially-penetrative, and extensively penetrative regimes. Flow visualization revealed the occurrence of short-wavelength instability of a plume structure, particularly in a partially penetrative regime. Fluid motion exhibits chaotic behaviour in an extensively penetrative regime. Detailed analyses of plume structure propagation are performed by measuring the plume length and plume rise. Appropriate scaling for the plume length and plume rise is derived, which allows universal collapse of the data for different flow conditions. Some information concerning the instability of the plume structure and decay of the vortex ring is obtained using proper orthogonal decomposition.

1.
P.
Orlandi
,
P.
Egermann
, and
E.
Hopfinger
, “
Vortex rings descending in a stratified fluid
,”
Phys. Fluids
10
(
11
),
2819
2827
(
1998
).
2.
A.
Tinaikar
,
S.
Advaith
,
U. K.
Chetia
,
K.
Manu
, and
S.
Basu
, “
Spatio-temporal disruption of thermocline by successive laminar vortex pairs in a single tank thermal energy storage
,”
Appl. Therm. Eng.
109
,
924
935
(
2016
).
3.
K.
Manu
,
P.
Anand
,
U. K.
Chetia
, and
S.
Basu
, “
Effects of instabilities and coherent structures on the performance of a thermocline based thermal energy storage
,”
Appl. Therm. Eng.
87
,
768
778
(
2015
).
4.
K.
Manu
,
P.
Deshmukh
, and
S.
Basu
, “
Rayleigh–Taylor instability in a thermocline based thermal storage tank
,”
Int. J. Therm. Sci.
100
,
333
345
(
2016
).
5.
S.
Hatte
,
C.
Mira-Hernandez
,
S.
Advaith
,
A.
Tinaikar
,
U. K.
Chetia
,
K.
Manu
,
K.
Chattopadhyay
,
J. A.
Weibel
,
S. V.
Garimella
,
V.
Srinivasan
, and
S.
Basu
, “
Short and long-term sensitivity of lab-scale thermocline based thermal storage to flow disturbances
,”
Appl. Therm. Eng.
109
,
936
948
(
2016
).
6.
S. E.
Widnall
, “
The structure and dynamics of vortex filaments
,”
Annu. Rev. Fluid Mech.
7
(
1
),
141
165
(
1975
).
7.
P.
Saffman
and
G.
Baker
, “
Vortex interactions
,”
Annu. Rev. Fluid Mech.
11
(
1
),
95
121
(
1979
).
8.
K.
Shariff
and
A.
Leonard
, “
Vortex rings
,”
Annu. Rev. Fluid Mech.
24
(
1
),
235
279
(
1992
).
9.
H.J.
Fernando
, “
Turbulent mixing in stratified fluids
,”
Annu. Rev. Fluid Mech.
23
(
1
),
455
493
(
1991
).
10.
J. J.
Riley
and
M.-P.
Lelong
, “
Fluid motions in the presence of strong stable stratification
,”
Annu. Rev. Fluid Mech.
32
(
1
),
613
657
(
2000
).
11.
T.
Leweke
,
S.
Le Dizès
, and
C. H.
Williamson
, “
Dynamics and instabilities of vortex pairs
,”
Annu. Rev. Fluid Mech.
48
,
507
541
(
2016
).
12.
T.
Sarpkaya
, “
Trailing vortices in homogeneous and density-stratified media
,”
J. Fluid Mech.
136
,
85
109
(
1983
).
13.
P.
Linden
, “
The interaction of a vortex ring with a sharp density interface: A model for turbulent entrainment
,”
J. Fluid Mech.
60
(
03
),
467
480
(
1973
).
14.
A.
Hecht
,
A.
Bilanin
,
J.
Hirsh
, and
R.
Snedeker
, “
Turbulent vortices in stratified Fluids
,”
AIAA J.
18
(
7
),
738
746
(
1980
).
15.
W. J.
Dahm
,
C. M.
Scheil
, and
G.
Tryggvason
, “
Dynamics of vortex interaction with a density interface
,”
J. Fluid Mech.
205
,
1
43
(
1989
).
16.
D. L.
Marcus
and
J. B.
Bell
, “
Numerical simulation of a viscous vortex ring interaction with a density interface
,”
Phys. Fluids
6
(
4
),
1505
1514
(
1994
).
17.
R. E.
Robins
and
D. P.
Delisi
, “
Numerical simulation of three-dimensional trailing vortex evolution in stratified fluid
,”
AIAA J.
36
(
6
),
981
985
(
1998
).
18.
T.
Maxworthy
, “
Some experimental studies of vortex rings
,”
J. Fluid Mech.
81
(
03
),
465
495
(
1977
).
19.
J.
Garten
,
J.
Werne
,
D.
Fritts
, and
S.
Arendt
, “
Direct numerical simulations of the Crow instability and subsequent vortex reconnection in a stratified fluid
,”
J. Fluid Mech.
426
,
1
45
(
2001
).
20.
S. E.
Widnall
,
D. B.
Bliss
, and
C.-Y.
Tsai
, “
The instability of short waves on a vortex ring
,”
J. Fluid Mech.
66
(
01
),
35
47
(
1974
).
21.
S. C.
Crow
, “
Stability theory for a pair of trailing vortices
,”
AIAA J.
8
(
12
),
2172
2179
(
1970
).
22.
D. P.
Delisi
and
R. E.
Robins
, “
Short-Scale instabilities in trailing wake vortices in a stratified fluid
,”
AIAA J.
38
(
10
),
1916
1923
(
2000
).
23.
K. K.
Nomura
,
H.
Tsutsui
,
D.
Mahoney
, and
J. W.
Rottman
, “
Short-wavelength instability and decay of a vortex pair in a stratified fluid
,”
J. Fluid Mech.
553
,
283
322
(
2006
).
24.
J.
Olsthoorn
and
S. B.
Dalziel
, “
Three-dimensional visualization of the interaction of a vortex ring with a stratified interface
,”
J. Fluid Mech.
820
,
549
579
(
2017
).
25.
M.
Raffel
,
C. E.
Willert
,
S.
Wereley
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
(
Springer
,
2013
).
26.
R.
Kuppuraj
and
S.
Basu
, “
Three-dimensional visualization of the interaction of a vortex ring with a stratified interface
,”
J. Fluid Mech.
810
,
82
126
(
2017
).
27.
M.
Gharib
,
E.
Rambod
, and
K.
Shariff
, “
A universal time scale for vortex ring formation
,”
J. Fluid Mech.
360
,
121
140
(
1998
).
28.
N.
Didden
, “
On the formation of vortex rings: Rolling-up and production of circulation
,”
Z. Angew. Math. Phys.
30
(
1
),
101
116
(
1979
).
29.
J.
Garten
,
S.
Arendt
,
D.
Fritts
, and
J.
Werne
, “
Dynamics of counter-rotating vortex pairs in stratified and sheared environments
,”
J. Fluid Mech.
361
,
189
236
(
1998
).
30.
G.
Briggs
, “
A Discussion on recent research in air pollution - Optimum formulas for buoyant plume rise
,”
Philos. Trans. R. Soc., A
265
(
1161
),
197
203
(
1969
).
31.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,” in
Atmospheric Turbulence and Radio Wave Propagation
, edited by
A. M.
Yaglom
and
V. I.
Tatarski
(
Nauka
,
Moscow
), pp.
166
178
.
32.
P.
Holmes
,
J. L.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
1998
).
33.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
(
1
),
539
575
(
1993
).
34.
B.
Cetegen
,
Y.
Dong
, and
M.
Soteriou
, “
Experiments on stability and oscillatory behavior of planar buoyant plumes
,”
Phys. Fluids
10
(
7
),
1658
1665
(
1998
).
You do not currently have access to this content.