The motion of a small spherical particle of finite size in an axisymmetric thermocapillary liquid bridge is investigated numerically and experimentally. Due to the crowding of streamlines towards the free surface and the recirculating nature of the flow, advected particles visit the free surface repeatedly. The balance between centrifugal inertia and the strong short-range repulsive forces a particle experiences near the free surface leads to an attracting limit cycle for the particle motion. The existence of this limit cycle is established experimentally. It is shown that limit cycles obtained numerically by one-way-coupled simulations based on the Maxey–Riley equation and a particle–surface interaction model compare favorably with the experimental results if the thickness of the lubrication gap between the free surface and the surface of the particle is properly taken into account.

1.
Carpenter
,
B. M.
and
Homsy
,
G. M.
, “
Combined buoyant-thermocapillary flow in a cavity
,”
J. Fluid Mech.
207
,
121
132
(
1989
).
2.
Diez
,
J. A.
and
Kondic
,
L.
, “
Computing three-dimensional thin film flows including contact lines
,”
J. Comput. Phys.
183
(
1
),
274
306
(
2002
).
3.
Gotoda
,
M.
,
Sano
,
R.
,
Kaneko
,
T.
, and
Ueno
,
I.
, “
Evaluation of existence region and formation time of particle accumulation structure (pas) in half-zone liquid bridge
,”
Eur. Phys. J.: Spec. Top.
224
(
2
),
299
307
(
2015
).
4.
Hofmann
,
E.
and
Kuhlmann
,
H. C.
, “
Particle accumulation on periodic orbits by repeated free surface collisions
,”
Phys. Fluids
23
(
7
),
072106
(
2011
).
5.
Hurle
,
D. T. J.
and
Jakeman
,
E.
, “
Introduction to the techniques of crystal growth
,”
Physicochem. Hydrodyn.
2
(
4
),
237
244
(
1981
).
6.
Jordan
,
D. W.
and
Smith
,
P.
,
Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems
(
Oxford University Press
,
USA
,
1999
), Vol. 2.
7.
Kawamura
,
H.
and
Ueno
,
I.
, “
Review on thermocapillary convection in a half-zone liquid bridge with high Pr fluid: Onset of oscillatory convection, transition of flow regimes, and particle accumulation structure
,” in
Surface Tension-Driven Flows and Applications
, edited by
R.
Savino
(
Research Signpost
,
2006
), Chap. 1, pp.
1
24
.
8.
Kawamura
,
H.
,
Nishino
,
K.
,
Matsumoto
,
S.
, and
Ueno
,
I.
, “
Report on microgravity experiments of Marangoni convection aboard international space station
,”
J. Heat Transfer
134
(
3
),
031005
(
2012
).
9.
Kuhlmann
,
H. C.
,
Thermocapillary Convection in Models of Crystal Growth
(
Springer
,
1999
).
10.
Kuhlmann
,
H. C.
and
Albensoeder
,
S.
, “
Three-dimensional flow instabilities in a thermocapillary-driven cavity
,”
Phys. Rev. E
77
,
036303
(
2008
).
11.
Kuhlmann
,
H. C.
and
Muldoon
,
F. H.
, “
Comment on ‘Ordering of small particles in one-dimensional coherent structures by time-periodic flows
,’”
Phys. Rev. Lett.
108
(
24
),
249401
(
2012
).
12.
Kuhlmann
,
H. C.
,
Mukin
,
R. V.
,
Sano
,
T.
, and
Ueno
,
I.
, “
Structure and dynamics of particle-accumulation in thermocapillary liquid bridges
,”
Fluid Dyn. Res.
46
(
4
),
041421
(
2014
).
13.
Kuhlmann
,
H. C.
and
Muldoon
,
F. H.
, “
Comment on ‘Synchronization of finite-size particles by a traveling wave in a cylindrical flow’ [Phys. Fluids 25, 092108 (2013)]
,”
Phys. Fluids
26
(
9
),
099101
(
2014
).
14.
Kuhlmann
,
H. C.
and
Lemée
,
T.
Particle-depletion dynamics in axisymmetric thermocapillary flows
,”
Eur. Phys. J.
224
,
309
318
(
2015
).
15.
Kumar
,
S.
, “
Liquid transfer in printing processes: Liquid bridges with moving contact lines
,”
Annu. Rev. Fluid Mech.
47
,
67
94
(
2015
).
16.
Leypoldt
,
J.
,
Kuhlmann
,
H. C.
, and
Rath
,
H. J.
, “
Three-dimensional numerical simulation of thermocapillary flows in cylindrical liquid bridges
,”
J. Fluid Mech.
414
,
285
314
(
2000
).
17.
Li
,
Y.-R.
,
Peng
,
L.
,
Akiyama
,
Y.
, and
Imaishi
,
N.
, “
Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool
,”
J. Cryst. Growth
259
(
4
),
374
387
(
2003
).
18.
Maxey
,
M. R.
and
Riley
,
J. J.
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
(
4
),
883
889
(
1983
).
19.
Melnikov
,
D. E.
,
Pushkin
,
D. O.
, and
Shevtsova
,
V. M.
, “
Synchronization of finite-size particles by a traveling wave in a cylindrical flow
,”
Phys. Fluids
25
(
9
),
092108
(
2013
).
20.
Meseguer
,
J.
,
Slobozhanin
,
L. A.
, and
Perales
,
J. M.
, “
A review on the stability of liquid bridges
,”
Adv. Space Res.
16
,
5
14
(
1995
).
21.
Mills
,
K. C.
,
Keene
,
B. J.
,
Brooks
,
R. F.
, and
Shirali
,
A.
, “
Marangoni effects in welding
,”
Philos. Trans. R. Soc., A
356
,
911
926
(
1998
).
22.
Mukin
,
R. V.
and
Kuhlmann
,
H. C.
, “
Topology of hydrothermal waves in liquid bridges and dissipative structures of transported particles
,”
Phys. Rev. E
88
,
053016
(
2013
).
23.
Muldoon
,
F. H.
and
Kuhlmann
,
H. C.
, “
Coherent particulate structures by boundary interaction of small particles in confined periodic flows
,”
Phys. D
253
,
40
65
(
2013
).
24.
Muldoon
,
F. H.
and
Kuhlmann
,
H. C.
, “
Origin of particle accumulation structures in liquid bridges: Particle–boundary interactions versus inertia
,”
Phys. Fluids
28
(
7
),
073305
(
2016
).
25.
Nagy
,
P. T.
and
Neitzel
,
G. P.
, “
Failure of thermocapillary-driven permanent nonwetting droplets
,”
Phys. Fluids
21
(
11
),
112106
(
2009
).
26.
Nienhüser
,
C. H.
and
Kuhlmann
,
H. C.
, “
Stability of thermocapillary flows in non-cylindrical liquid bridges
,”
J. Fluid Mech.
458
,
35
73
(
2002
).
27.
Padday
,
J. F.
, “
Capillary forces and stability in zero-gravity environments
,” in
ESA Special Publication
, edited by
B.
Battrick
(
ESA Special Publication
,
1976
), Vol. 114, pp.
447
454
.
28.
Pushkin
,
D. O.
,
Melnikov
,
D. E.
, and
Shevtsova
,
V. M.
, “
Ordering of small particles in one-dimensional coherent structures by time-periodic flows
,”
Phys. Rev. Lett.
106
(
23
),
234501
(
2011
).
29.
Romanò
,
F.
, “
Particle accumulation in incompressible laminar flows due to particle-boundary interaction
,” Ph.D. thesis,
TU Wien
,
2016
.
30.
Romanò
,
F.
and
Kuhlmann
,
H. C.
, “
Numerical investigation of the interaction of a finite-size particle with a tangentially moving boundary
,”
Int. J. Heat Fluid Flow
62A
,
75
82
(
2016
).
31.
Romanò
,
F.
and
Kuhlmann
,
H. C.
, “
Particle–boundary interaction in a shear-driven cavity flow
,”
Theor. Comput. Fluid Dyn.
31
,
427
445
(
2017
).
32.
Schwabe
,
D.
, “
Marangoni effects in crystal growth melts
,”
PhysicoChem. Hydrodyn.
2
,
263
280
(
1981
).
33.
Schwabe
,
D.
,
Lamprecht
,
R.
, and
Scharmann
,
A.
, “
Marangoni convection in an open boat
,” in
Proceedings of the Norderney Symposium on Scientific Results of the German Spacelab Mission D1
, edited by
P. R.
Sahm
,
R.
Jansen
, and
M. H.
Keller
(
Wissenschaftliche Projektführung, DFVLR
,
1986
).
34.
Schwabe
,
D.
,
Hintz
,
P.
, and
Frank
,
S.
, “
New features of thermocapillary convection in floating zones revealed by tracer particle accumulation structures (pas)
,”
Microgravity Sci. Technol.
9
(
3
),
163
168
(
1996
).
35.
Schwabe
,
D.
and
Frank
,
S.
, “
Particle accumulation structures (PAS) in the toroidal thermocapillary vortex of a floating zone–model for a step in planet-formation?
,”
Adv. Space Res.
23
(
7
),
1191
1196
(
1999
).
36.
Schwabe
,
D.
,
Mizev
,
A. I.
,
Udhayasankar
,
M.
, and
Tanaka
,
S.
, “
Formation of dynamic particle accumulation structures in oscillatory thermocapillary flow in liquid bridges
,”
Phys. Fluids
19
(
7
),
072102
(
2007
).
37.
Schwabe
,
D.
and
Mizev
,
A. I.
, “
Particles of different density in thermocapillary liquid bridges under the action of travelling and standing hydrothermal waves
,”
Eur. Phys. J.
192
(
1
),
13
27
(
2011
).
38.
Schwabe
,
D.
, “
Thermocapillary liquid bridges and Marangoni convection under microgravity—Results and lessons learned
,”
Microgravity Sci. Technol.
26
,
1
10
(
2014
).
39.
Scriven
,
L. E.
and
Sternling
,
C. V.
, “
The Marangoni effects
,”
Nature
187
,
186
188
(
1960
).
40.
Shiratori
,
S.
,
Kuhlmann
,
H. C.
, and
Hibiya
,
T.
, “
Linear stability of thermocapillary flow in partially confined half-zones
,”
Phys. Fluids
19
,
044103
(
2007
).
41.
Sirignano
,
W. A.
and
Glassman
,
I.
, “
Flame spreading above liquid fuels: Surface-tension-driven flows
,”
Combust. Sci. Technol.
1
(
4
),
307
312
(
1970
).
42.
Smith
,
M. K.
and
Davis
,
S. H.
, “
Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities
,”
J. Fluid Mech.
132
,
119
144
(
1983
).
43.
Tanaka
,
S.
,
Kawamura
,
H.
,
Ueno
,
I.
, and
Schwabe
,
D.
, “
Flow structure and dynamic particle accumulation in thermocapillary convection in a liquid bridge
,”
Phys. Fluids
18
,
067103
(
2006
).
44.
Thompson
,
J. F.
,
Warsi
,
Z. U.
, and
Mastin
,
C. W.
,
Numerical Grid Generation: Foundations and Applications
(
North-Holland
,
Amsterdam
,
1985
), Vol. 45.
45.
Ueno
,
I.
,
Tanaka
,
S.
, and
Kawamura
,
H.
, “
Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge
,”
Phys. Fluids
15
,
408
416
(
2003
).
46.
Vinokur
,
M.
, “
On one-dimensional stretching functions for finite-difference calculations
,”
J. Comput. Phys.
50
(
2
),
215
234
(
1983
).
47.
Wesseling
,
P.
,
Principles of Computational Fluid Dynamics
(
Springer Science and Business Media
,
2009
).
48.
Xu
,
J.
and
Zebib
,
A.
, “
Oscillatory two- and three-dimensional thermocapillary convection
,”
J. Fluid Mech.
364
,
187
209
(
1998
).
49.
Yano
,
T.
,
Nishino
,
K.
,
Kawamura
,
H.
,
Ueno
,
I.
, and
Matsumoto
,
S.
, “
Instability and associated roll structure of Marangoni convection in high Prandtl number liquid bridge with large aspect ratio
,”
Phys. Fluids
27
(
2
),
024108
(
2015
).
50.
Young
,
N. O.
,
Goldstein
,
J. S.
, and
Block
,
M. J.
, “
The motion of bubbles in a vertical temperature gradient
,”
J. Fluid Mech.
6
,
350
356
(
1959
).
You do not currently have access to this content.