A numerical model for the behavior of flexible fibers under inertial flows was developed by coupling discrete element method and finite volume method. The fibers were discretized into several beam segments, and the equations of motion were integrated with a 2nd order accurate explicit scheme. The 3D Navier-Stokes equations were discretized by a 4th order accurate (space and time) unstructured finite volume scheme. Momentum exchange between the fluid and fibers was enforced by including a source term of the fiber hydrodynamic force in the Navier-Stokes equations. The choice of an appropriate model for the hydrodynamic force on a fiber in a fluid flow depending on the Reynolds number is discussed and covers a range of Reynolds number between 10−2 and 102. The current numerical model is validated against different experimental studies, including deflection of fiber in uniform flow, fibers in isotropic turbulent flow, and concentrated fiber suspension in channel flow. The numerical model was able to reproduce the damping/enhancement phenomena of turbulence in a channel flow as a consequence of the micro-structural evolution of the fibers.

1.
C. J. S.
Petrie
, “
The rheology of fibre suspensions
,”
J. Non-Newtonian Fluid Mech.
87
(
2
),
369
402
(
1999
).
2.
A.-K.
Tornberg
and
M. J.
Shelley
, “
Simulating the dynamics and interactions of flexible fibers in Stokes flows
,”
J. Comput. Phys.
196
(
1
),
8
40
(
2004
).
3.
J. B.
Keller
and
S. I.
Rubinow
, “
Slender-body theory for slow viscous flow
,”
J. Fluid Mech.
75
(
4
),
705
714
(
1976
).
4.
R. E.
Johnson
, “
An improved slender-body theory for Stokes flow
,”
J. Fluid Mech.
99
(
02
),
411
431
(
1980
).
5.
L.
Li
,
H.
Manikantan
,
D.
Saintillan
, and
S. E.
Spagnolie
, “
The sedimentation of flexible filaments
,”
J. Fluid Mech.
735
(
09
),
705
(
2013
).
6.
L.
Guglielmini
,
A.
Kushwaha
,
E. S. G.
Shaqfeh
, and
H. A.
Stone
, “
Buckling transitions of an elastic filament in a viscous stagnation point flow
,”
Phys. Fluids
24
(
12
),
123601
(
2012
).
7.
R. G.
Cox
, “
The motion of long Slender bodies in a viscous fluid Part 1. General theory
,”
J. Fluid Mech.
44
(
04
),
791
810
(
1970
).
8.
E.
Nazockdast
,
A.
Rahimian
,
D.
Zorin
, and
M.
Shelley
, “
A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
,”
J. Comput. Phys.
329
,
173
209
(
2017
).
9.
A.
Lindner
and
M.
Shelley
, “
Elastic fibers in flows
,” in
Fluid-Structure Interactions in Low-Reynolds-Number Flows
(
The Royal Society of Chemistry
,
2016
), Chap. 5, pp.
168
192
.
10.
C. S.
Peskin
and
D. M.
McQueen
, “
A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid
,”
J. Comput. Phys.
81
(
2
),
372
405
(
1989
).
11.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
12.
J. M.
Stockie
and
S. I.
Green
, “
Simulating the motion of flexible pulp fibres using the immersed boundary method
,”
J. Comput. Phys.
147
(
1
),
147
165
(
1998
).
13.
O. L.
Forgacs
and
S. G.
Mason
, “
Particle motions in sheared suspensions: IX. Spin and deformation of threadlike particles
,”
J. Colloid Sci.
14
(
5
),
457
472
(
1959
).
14.
J. K.
Wiens
and
J. M.
Stockie
, “
Simulating flexible fiber suspensions using a scalable immersed boundary algorithm
,”
Comput. Methods Appl. Mech. Eng.
290
,
1
18
(
2015
).
15.
S.
Lim
,
A.
Ferent
,
X. S.
Wang
, and
C. S.
Peskin
, “
Dynamics of a closed rod with twist and bend in fluid
,”
SIAM J. Sci. Comput.
31
(
1
),
273
302
(
2008
).
16.
J.
Wu
and
C. K.
Aidun
, “
A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force
,”
Int. J. Multiphase Flow
36
(
3
),
202
209
(
2010
).
17.
J.
Wu
and
C. K.
Aidun
, “
A numerical study of the effect of fibre stiffness on the rheology of sheared flexible fibre suspensions
,”
J. Fluid Mech.
662
,
123
(
2010
).
18.
A.
Salahuddin
,
J.
Wu
, and
C. K.
Aidun
, “
Numerical study of rotational diffusion in sheared semidilute fibre suspension
,”
J. Fluid Mech.
692
(
1
),
153
182
(
2012
).
19.
M.
Uhlmann
, “
An immersed boundary method with direct forcing for the simulation of particulate flows
,”
J. Comput. Phys.
209
(
2
),
448
476
(
2005
).
20.
R.
Glowinski
,
T. W.
Pan
,
T. I.
Hesla
,
D. D.
Joseph
, and
J.
Periaux
, “
A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow
,”
J. Comput. Phys.
169
(
2
),
363
426
(
2001
).
21.
S.
Yamamoto
and
T.
Matsuoka
, “
A method for dynamic simulation of rigid and flexible fibers in a flow field
,”
J. Chem. Phys.
98
(
1
),
644
650
(
1993
).
22.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,” in
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(
The Royal Society
,
1922
), Vol. 102, pp.
161
179
.
23.
C. G.
Joung
,
N.
Phan-Thien
, and
X. J.
Fan
, “
Direct simulation of flexible fibers
,”
J. Non-Newtonian Fluid Mech.
99
(
1
),
1
36
(
2001
).
24.
B.
Delmotte
,
E.
Climent
, and
F.
Plouraboué
, “
A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number
,”
J. Comput. Phys.
286
,
14
37
(
2015
).
25.
C. F.
Schmid
,
L. H.
Switzer
, and
D. J.
Klingenberg
, “
Simulations of fiber flocculation: Effects of fiber properties and interfiber friction
,”
J. Rheol.
44
(
4
),
781
809
(
2000
).
26.
S. B.
Lindström
and
T.
Uesaka
, “
Simulation of the motion of flexible fibers in viscous fluid flow
,”
Phys. Fluids
19
(
11
),
113307
(
2007
).
27.
S. B.
Lindström
and
T.
Uesaka
, “
Particle-level simulation of forming of the fiber network in papermaking
,”
Int. J. Eng. Sci.
46
(
9
),
858
876
(
2008
).
28.
J.
Andrić
,
S. B.
Lindström
,
S.
Sasic
, and
H.
Nilsson
, “
Rheological properties of dilute suspensions of rigid and flexible fibers
,”
J. Non-Newtonian Fluid Mech.
212
,
36
46
(
2014
).
29.
J.
Andrić
,
S. B.
Lindström
,
S.
Sasic
, and
H.
Nilsson
, “
Ballistic deflection of fibres in decelerating flow
,”
Int. J. Multiphase Flow
85
,
57
(
2016
).
30.
J. S.
Andrić
,
S. B.
Lindström
,
S. M.
Sasic
, and
H.
Nilsson
, “
Particle-level simulations of flocculation in a fiber suspension flowing through a diffuser
,”
Therm. Sci.
20
(
6
),
S1-S1
(
2016
).
31.
J.
Hämäläinen
,
S. B.
Lindström
,
T.
Hämäläinen
, and
H.
Niskanen
, “
Papermaking fibre-suspension flow simulations at multiple scales
,”
J. Eng. Math.
71
(
1
),
55
79
(
2011
).
32.
V.
Moureau
,
P.
Domingo
, and
L.
Vervisch
, “
Design of a massively parallel CFD code for complex geometries
,”
C. R. Méc.
339
(
2
),
141
148
(
2011
).
33.
V.
Šmilauer
 et al,
Yade Documentation
, 2nd ed. (
The Yade Project
,
2015
), http://yade-dem.org/doc/.
34.
B.
Chareyre
and
P.
Villard
, “
Dynamic spar elements and discrete element methods in two dimensions for the modeling of soil-inclusion problems
,”
J. Eng. Mech.
131
,
689
(
2005
).
35.
F.
Bourrier
,
F.
Kneib
,
B.
Chareyre
, and
T.
Fourcaud
, “
Discrete modeling of granular soils reinforcement by plant roots
,”
Ecol. Eng.
61
,
646
657
(
2013
).
36.
A.
Effeindzourou
,
B.
Chareyre
,
K.
Thoeni
,
A.
Giacomini
, and
F.
Kneib
, “
Modelling of deformable structures in the general framework of the discrete element method
,”
Geotextiles Geomembr.
44
(
2
),
143
156
(
2016
).
37.
O. C.
Zienkiewicz
,
R. L.
Taylor
, and
R. L.
Taylor
,
The Finite Element Method
(
McGraw-Hill
,
London
,
1977
), Vol. 3.
38.
N. A.
Frankel
and
A.
Acrivos
, “
The constitutive equation for a dilute emulsion
,”
J. Fluid Mech.
44
(
01
),
65
78
(
1970
).
39.
S.
Tomotika
,
T.
Aoi
, and
H.
Yosinobu
, “
On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number
,” in
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(
The Royal Society
,
1953
), Vol. 219, pp.
233
244
.
40.
N.
Marheineke
and
R.
Wegener
, “
Modeling and application of a stochastic drag for fibers in turbulent flows
,”
Int. J. Multiphase Flow
37
(
2
),
136
148
(
2011
).
41.
G.
Taylor
, “
Analysis of the swimming of long and narrow animals
,” in
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(
The Royal Society
,
1952
), Vol. 214, pp.
158
183
.
42.
E.
Guazzelli
and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University Press
,
2011
).
43.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, Course of Theoretical Physics Vol. 6 (
Elsevier
,
2013
).
44.
T. R.
Powers
, “
Dynamics of filaments and membranes in a viscous fluid
,”
Rev. Mod. Phys.
82
(
2
),
1607
(
2010
).
45.
M.
Kraushaar
, “
Application of the compressible and low-Mach number approaches to large-eddy simulation of turbulent flows in aero-engines
,” Ph.D. thesis,
Institut National Polytechnique de Toulouse-INPT
,
2011
.
46.
R. A.
Hosn
,
L.
Sibille
,
N.
Benahmed
, and
B.
Chareyre
, “
Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction
,”
Granular Matter
19
(
1
),
4
(
2017
).
47.
E.
Catalano
, “
A pore–scale coupled hydromechanical model for biphasic granular media. Application to granular sediment hydrodynamics
,” Ph.D. thesis,
Université de Grenoble
,
2012
.
48.
D. J.
Tritton
, “
Experiments on the flow past a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
6
(
04
),
547
567
(
1959
).
49.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Courier Corporation
,
2013
).
50.
C.
Brouzet
,
G.
Verhille
, and
P. L.
Gal
, “
Flexible fiber in a turbulent flow: A macroscopic polymer
,”
Phys. Rev. Lett.
112
(
7
),
074501
(
2014
).
51.
G.
Verhille
and
A.
Bartoli
, “
3D conformation of a flexible fiber in a turbulent flow
,”
Exp. Fluids
57
(
7
),
1
10
(
2016
).
52.
C.
Rosales
and
C.
Meneveau
, “
Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties
,”
Phys. Fluids
17
(
9
),
095106
(
2005
).
53.
H. J.
Xu
and
C. K.
Aidun
, “
Characteristics of fiber suspension flow in a rectangular channel
,”
Int. J. Multiphase Flow
31
(
3
),
318
336
(
2005
).
54.
Y.
Morinishi
,
S.
Tamano
, and
E.
Nakamura
, “
New scaling of turbulence statistics for incompressible thermal channel flow with different total heat flux gradients
,”
Int. J. Heat Mass Transfer
50
(
9
),
1781
1789
(
2007
).
55.
V.
Loisel
,
M.
Abbas
,
O.
Masbernat
, and
E.
Climent
, “
The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime
,”
Phys. Fluids
25
(
12
),
123304
(
2013
).
56.
M.
Do-Quang
,
G.
Amberg
,
G.
Brethouwer
, and
A. V.
Johansson
, “
Simulation of finite-size fibers in turbulent channel flows
,”
Phys. Rev. E
89
(
1
),
013006
(
2014
).
You do not currently have access to this content.