The present study focuses on the identification of the large bubble entrapment regime on the V-D map and on the We-Fr map together with the detailed analysis of the mechanism of large bubble entrapment. The sequential large and small bubble entrapment previously found by Wang, Kuan, and Tsai [“Do we understand the bubble formation by a single drop impacting upon liquid surface?,” Phys. Fluids 25, 101702 (2013)] has been observed in this investigation. Large bubble entrapment is observed only for prolate-shaped drops. Prolate shaped drops bring about deeper penetration of the vortex ring into the pool. The emergence of an ejecta sheet that leads to lamella prevents the penetration of the vortex ring and thus prevents the large bubble entrapment. The entrapment of a large bubble is always accompanied by an inward jet and an upward jet. The inward jet penetrates through the bubble and deforms the bubble shape. A thorough parametric study has been conducted numerically and experimentally on the crater dynamics and its dependence on the initial condition of the drop at the instance of impact.

1.
H. C.
Pumphrey
and
P. A.
Elmore
, “
The entrainment of bubbles by drop impacts
,”
J. Fluid Mech.
220
,
539
567
(
1990
).
2.
H. N.
Oguz
and
A.
Prosperetti
, “
Bubble entrainment by the impact of drops on liquid surfaces
,”
J. Fluid Mech.
219
,
143
179
(
1990
).
3.
M.
Rein
, “
The transitional regime between coalescing and splashing drops
,”
J. Fluid Mech.
306
,
145
165
(
1996
).
4.
L. J.
Leng
, “
Splash formation by spherical drops
,”
J. Fluid Mech.
427
,
73
105
(
2001
).
5.
D.
Morton
,
M.
Rudman
, and
L.
Jong-Leng
, “
An investigation of the flow regimes resulting from splashing drops
,”
Phys. Fluids
12
,
747
763
(
2000
).
6.
B.
Ray
,
G.
Biswas
, and
A.
Sharma
, “
Regimes during liquid drop impact on a liquid pool
,”
J. Fluid Mech.
768
,
492
523
(
2015
).
7.
B. W.
Zeff
,
B.
Kleber
,
J.
Fineberg
, and
D. P.
Lathrop
, “
Singularity dynamics in curvature collapse and jet eruption on a fluid surface
,”
Nature
403
,
401
404
(
2000
).
8.
R.
Bergmann
,
D.
van der Meer
,
M.
Stijnman
,
M.
Sandtke
,
A.
Prosperetti
, and
D.
Lohse
, “
Giant bubble pinch-off
,”
Phys. Rev. Lett.
96
,
154505
(
2006
).
9.
S.
Gekle
,
J. M.
Gordillo
,
D.
van der Meer
, and
D.
Lohse
, “
High-speed jet formation after solid object impact
,”
Phys. Rev. Lett.
102
,
034502
(
2009
).
10.
L.
Duchemin
,
S.
Popinet
,
C.
Josserand
, and
S.
Zaleski
, “
Jet formation in bubbles bursting at a free surface
,”
Phys. Fluids
14
,
3000
3008
(
2002
).
11.
M.-J.
Thoraval
,
Y.
Li
, and
S. T.
Thoroddsen
, “
Vortex-f-induced large bubble entrainment during drop impact
,”
Phys. Rev. E
93
,
033128
(
2016
).
12.
Q.
Deng
,
A. V.
Anilkumar
, and
T. G.
Wang
, “
The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool
,”
J. Fluid Mech.
578
,
119–138
(
2007
).
13.
S.
Chen
and
L.
Guo
, “
Viscosity effect on regular bubble entrapment during drop impact into a deep pool
,”
Chem. Eng. Sci.
109
,
1
16
(
2014
).
14.
J.
Zou
,
C.
Ji
,
B.
Yuan
,
Y.
Ren
,
X.
Ruan
, and
X.
Fu
, “
Large bubble entrapment during drop impacts on a restricted liquid surface
,”
Phys. Fluids
24
,
057101
(
2012
).
15.
A.-B.
Wang
,
C.-C.
Kuan
, and
P.-H.
Tsai
, “
Do we understand the bubble formation by a single drop impacting upon liquid surface?
,”
Phys. Fluids
25
,
101702
(
2013
).
16.
M.
Sussman
and
E. G.
Puckett
, “
A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows
,”
J. Comput. Phys.
162
,
301
337
(
2000
).
17.
D.
Gerlach
,
G.
Tomar
,
G.
Biswas
, and
F.
Durst
, “
Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows
,”
Int. J. Heat Mass Transfer
49
,
740
754
(
2006
).
18.
C. W.
Hirt
and
B.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
19.
S.
Osher
and
J. A.
Sethian
, “
Fronts propagating with curvature dependent speed
,”
J. Comput. Phys.
79
,
12
49
(
1988
).
20.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
21.
F. H.
Harlow
and
J. E.
Welch
, “
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
,”
Phys. Fluids
8
,
2182
2189
(
1965
).
22.
Y. C.
Chang
,
T. Y.
Hou
,
B.
Meriman
, and
S.
Osher
, “
A level set formulation of Eulerian interface capturing methods for incompressible fluid flows
,”
J. Comput. Phys.
464
,
449
464
(
1996
).
23.
Hypre 2.0.0 user manual, Center for Applied Science Computing, silver ed.,
Lawrence Livermore National Laboratory
,
USA
,
2006
.
24.
E. G.
Puckett
,
A. S.
Almgren
,
J. B.
Bell
,
D. L.
Marcus
, and
W. J.
Rider
, “
A high-order projection method for tracking fluid interfaces in variable density incompressible flows
,”
J. Comput. Phys.
130
,
269
282
(
1997
).
25.
G.
Son
and
N.
Hur
, “
A coupled level set and volume-of-fluid method for the buoyancy-driven motion of fluid particles
,”
Numer. Heat Transfer, Part B
42
,
523
542
(
2002
).
26.
G.
Son
, “
Efficient implementation of a coupled level-set and volume-of-fluid method for three-dimensional incompressible two-phase flows
,”
Numer. Heat Transfer, Part B
43
,
549
565
(
2003
).
27.
B.
Ray
,
G.
Biswas
, and
A.
Sharma
, “
Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface
,”
J. Fluid Mech.
655
,
72
104
(
2010
).
28.
B.
Ray
,
G.
Biswas
, and
A.
Sharma
, “
Bubble pinch-off and scaling during liquid drop impact on liquid pool
,”
Phys. Fluids
24
,
082108
(
2012
).
29.
G.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge, UK
,
1997
), pp.
1
615
.
30.
M.-J.
Thoraval
,
K.
Takehara
,
T. G.
Etoh
,
S.
Popinet
,
P.
Ray
,
C.
Josserand
,
S.
Zaleski
, and
S. T.
Thoroddsen
, “
von Kármán vortex street within an impacting drop
,”
Phys. Rev. Lett.
108
,
264506
(
2012
).
31.
A.
Castrejón-Pita
,
J.
Castrejón-Pita
, and
I. M.
Hutchings
, “
Experimental observation of von Kármán vortices during drop impact
,”
Phys. Rev. E
86
,
045301
(
2012
).
32.
G.
Agbaglah
,
M.-J.
Thoraval
,
S. T.
Thoroddsen
,
L. V.
Zhang
,
K.
Fezzaa
, and
R. D.
Deegan
, “
Drop impact into a deep pool: Vortex shedding and jet formation
,”
J. Fluid Mech.
764
,
R1
(
2015
).
33.
B.
Peck
and
L.
Sigurdson
, “
The three-dimensional vortex structure of an impacting water drop
,”
Phys. Fluids
6
,
564
576
(
1994
).
34.
L. V.
Zhang
,
J.
Toole
,
K.
Fezzaa
, and
R. D.
Deegan
, “
Evolution of the ejecta sheet from the impact of a drop with a deep pool
,”
J. Fluid Mech.
690
,
5–15
(
2012
).
35.
J. S.
Lee
,
S. J.
Park
,
J. H.
Lee
,
B. M.
Weon
,
K.
Fezzaa
, and
J. H.
Je
, “
Origin and dynamics of vortex rings in drop splashing
,”
Nat. Commun.
6
,
8187
(
2015
).
36.
D. S.
Chapman
and
P. R.
Critchlow
, “
Formation of vortex rings from falling drops
,”
J. Fluid Mech.
29
,
177
185
(
1967
).
37.
V.
Kutter
, “
Die anwendung on wirbelringen zur bestimmung von oberflächenspannungen
,”
Phys. Z.
23
,
573
579
(
1916
).
38.
F.
Roudriguez
and
R.
Mesler
, “
The penetration of drop-formed vortex rings into pools of liquid
,”
J. Colloid Interface Sci.
121
,
121
129
(
1988
).
39.
J.
Shin
and
T. A.
McMahon
, “
The tuning of a splash
,”
Phys. Fluids A
2
,
1312
1317
(
1990
).
40.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
93
(
1993
).
You do not currently have access to this content.