The onset of convection in a rotating spherical shell subject to laterally varying heat flux at the outer boundary is considered in this paper. The focus is on the geophysically relevant regime of rapid rotation (low Ekman number) where the natural length scale of convection is significantly smaller than the length scale imposed by the boundary heat flux pattern. Contrary to earlier studies at a higher Ekman number, we find a substantial reduction in the onset Rayleigh number Rac with increasing lateral variation. The decrease in Rac is shown to be closely correlated to the equatorial heat flux surplus in the steady, basic state solution. The consistency of such a correlation makes the estimation of Rac possible without solving the full stability problem. The steady baroclinic flow has a strong cyclone–anticyclone asymmetry in the kinetic helicity only for equatorially symmetric lateral variations, with possible implications for dynamo action. Equatorially antisymmetric variations, on the other hand, break the symmetry of the mean flow, in turn negating its helicity. Analysis of the perturbation solution reveals strongly localized clusters through which convection rolls drift in and out at a frequency higher than that for the reference case with homogeneous boundary heat flux. Large lateral variations produce a marked decrease in the azimuthal length scale of columns, which indicates that small-scale motions are essential to the transport of heat in rapidly rotating, localized convection. With an equatorially antisymmetric heat flux pattern, convection in individual clusters goes through an asynchronous wax-wane cycle whose frequency is much lower than the drift rate of the columns. These continual variations in convection intensity may in turn result in fluctuations in the magnetic field intensity, an effect that needs to be considered in dynamo models. Finally, there is a notable analogy between the role of a laterally varying boundary heat flux and the role of a laterally varying magnetic field in confining small-scale convection.

1.
R.
Hide
, “
Motions of the Earth’s core and mantle, and variations of the main geomagnetic field
,”
Science
157
,
55
56
(
1967
).
2.
D. A.
Yuen
,
O.
Cadek
,
A.
Chopelas
, and
C.
Matyska
, “
Geophysical inferences of thermal-chemical structures in the lower mantle
,”
Geophys. Res. Lett.
20
,
899
902
, (
1993
).
3.
G.
Masters
,
G.
Laske
,
H.
Bolton
, and
A.
Dziewonski
, “
The relative behavior of shear velocity, bulk sound velocity, and compressional velocity in the mantle: Implications for chemical and thermal structure
,” in
Earth’s Deep Interior
, edited by
S.
Karato
,
A. M.
Forte
,
R. C.
Liebermann
,
G.
Masters
, and
L.
Stixrude
(
AGU Monograph
,
Washington, DC
,
2000
), Vol. 117.
4.
B. Y.
Kuo
,
E. J.
Garnero
, and
T.
Lay
, “
Tomographic inversion of S–SKS times for shear velocity heterogeneity in D″: Degree 12 and hybrid models
,”
J. Geophys. Res.: Solid Earth
105
,
28139
28157
, (
2000
).
5.
G. M.
Jones
, “
Thermal interaction of the core and the mantle and long-term behavior of the geomagnetic field
,”
J. Geophys. Res.
82
,
1703
1709
, (
1977
).
6.
A. P.
Willis
,
B.
Sreenivasan
, and
D.
Gubbins
, “
Thermal core-mantle interaction: Exploring regimes for ‘locked’ dynamo action
,”
Phys. Earth Planet. Inter.
165
,
83
92
(
2007
).
7.
B.
Sreenivasan
and
D.
Gubbins
, “
Dynamos with weakly convecting outer layers: Implications for core-mantle boundary interaction
,”
Geophys. Astrophys. Fluid Dyn.
102
,
395
407
(
2008
).
8.
A.
Jackson
,
A. R. T.
Jonkers
, and
M. R.
Walker
, “
Four centuries of geomagnetic secular variation from historical records
,”
Philos. Trans. R. Soc., A
358
,
957
990
(
2000
).
9.
K. H.
Chan
,
K.
Zhang
,
L.
Li
, and
X.
Liao
, “
On the effect of an electrically heterogeneous lower mantle on planetary dynamos
,”
Phys. Earth Planet. Inter.
169
,
204
210
(
2008
).
10.
K.
Zhang
and
D.
Gubbins
, “
On convection in the Earth’s core driven by lateral temperature variations in the lower mantle
,”
Geophys. J. Int.
108
,
247
255
(
1992
).
11.
S. J.
Gibbons
and
D.
Gubbins
, “
Convection in the Earth’s core driven by lateral variations in the core–mantle boundary heat flux
,”
Geophys. J. Int.
142
,
631
642
(
2000
).
12.
K.
Zhang
and
D.
Gubbins
, “
Convection in a rotating spherical fluid shell with an inhomogeneous temperature boundary condition at infinite Prandtl number
,”
J. Fluid Mech.
250
,
209
232
(
1993
).
13.
F. H.
Busse
, “
Thermal instabilities in rapidly rotating systems
,”
J. Fluid Mech.
44
,
441
460
(
1970
).
14.
K.
Zhang
and
D.
Gubbins
, “
Convection in a rotating spherical fluid shell with an inhomogeneous temperature boundary condition at finite Prandtl number
,”
Phys. Fluids
8
,
1141
1148
(
1996
).
15.
G. R.
Sarson
,
C. A.
Jones
, and
A. W.
Longbottom
, “
The influence of boundary region heterogeneities on the geodynamo
,”
Phys. Earth Planet. Inter.
101
,
13
32
(
1997
).
16.
Z.-P.
Sun
,
G.
Schubert
, and
G. A.
Glatzmaier
, “
Numerical simulations of thermal convection in a rapidly rotating spherical shell cooled inhomogeneously from above
,”
Geophys. Astrophys. Fluid Dyn.
75
,
199
226
(
1994
).
17.
B.
Sreenivasan
, “
On dynamo action produced by boundary thermal coupling
,”
Phys. Earth Planet. Inter.
177
,
130
138
(
2009
).
18.
C. J.
Davies
,
D.
Gubbins
, and
P. K.
Jimack
, “
Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition
,”
J. Fluid Mech.
641
,
335
358
(
2009
).
19.
W.
Dietrich
,
K.
Hori
, and
J.
Wicht
, “
Core flows and heat transfer induced by inhomogeneous cooling with sub- and supercritical convection
,”
Phys. Earth Planet. Inter.
251
,
36
51
(
2016
).
20.
S.
Takehiro
,
M.
Ishiwatari
,
K.
Nakajima
, and
Y. Y.
Hayashi
, “
Linear stability of thermal convection in rotating systems with fixed heat flux boundaries
,”
Geophys. Astrophys. Fluid Dyn.
96
,
439
459
(
2002
).
21.
K.
Hori
,
J.
Wicht
, and
U. R.
Christensen
, “
The influence of thermo-compositional boundary conditions on convection and dynamos in a rotating spherical shell
,”
Phys. Earth Planet. Inter.
196–197
,
32
48
(
2012
).
22.
R. J.
Teed
,
C. A.
Jones
, and
R.
Hollerbach
, “
Rapidly rotating plane layer convection with zonal flow
,”
Geophys. Astrophys. Fluid Dyn.
104
,
457
480
(
2010
).
23.
S.
Sahoo
,
B.
Sreenivasan
, and
H.
Amit
, “
Dynamos driven by weak thermal convection and heterogeneous outer boundary heat flux
,”
Phys. Earth Planet. Inter.
250
,
35
45
(
2016
).
24.
N.
Zhang
and
S.
Zhong
, “
Heat fluxes at the Earth’s surface and core-mantle boundary since Pangea formation and their implications for the geomagnetic superchrons
,”
Earth Planet. Sci. Lett.
306
,
205
216
(
2011
).
25.
U.
Christensen
,
J.
Aubert
,
P.
Cardin
,
E.
Dormy
,
S.
Gibbons
,
G.
Glatzmaier
,
E.
Grote
,
Y.
Honkura
,
C.
Jones
,
M.
Kono
 et al, “
A numerical dynamo benchmark
,”
Phys. Earth Planet. Inter.
128
,
25
34
(
2001
).
26.
S. I.
Braginsky
and
P. H.
Roberts
, “
Equations governing convection in Earth’s core and the geodynamo
,”
Geophys. Astrophys. Fluid Dyn.
79
,
1
97
(
1995
).
27.
E.
Dormy
,
A. M.
Soward
,
C. A.
Jones
,
D.
Jault
, and
P.
Cardin
, “
The onset of thermal convection in rotating spherical shells
,”
J. Fluid Mech.
501
,
43
70
(
2004
).
28.
S. J.
Gibbons
,
D.
Gubbins
, and
K.
Zhang
, “
Convection in rotating spherical fluid shells with inhomogeneous heat flux at the outer boundary
,”
Geophys. Astrophys. Fluid Dyn.
101
,
347
370
(
2007
).
29.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Springer-Verlag
,
New York, USA
,
1987
).
30.
C. A.
Jones
,
A. M.
Soward
, and
A. I.
Mussa
, “
The onset of thermal convection in a rapidly rotating sphere
,”
J. Fluid Mech.
405
,
157
179
(
2000
).
31.
J. D.
Crawford
and
E.
Knobloch
, “
Symmetry and symmetry-breaking bifurcations in fluid dynamics
,”
Annu. Rev. Fluid Mech.
23
,
341
387
(
1991
).
32.
K.
Zhang
and
G.
Schubert
, “
Spatial symmetry breaking in rapidly rotating convective spherical shells
,”
Geophys. Res. Lett.
22
,
1265
1268
, (
1995
).
33.
A.
Tilgner
and
F. H.
Busse
, “
Fluid flows in precessing spherical shells
,”
J. Fluid Mech.
426
,
387
396
(
2001
).
34.
F.
Marques
,
A.
Meseguer
,
J. M.
Lopez
,
J. R.
Pacheco
, and
J. M.
Lopez
, “
Bifurcations with imperfect SO(2) symmetry and pinning of rotating waves
,”
Proc. R. Soc. A
469
,
20120348
(
2013
).
35.
M.
Kono
and
P. H.
Roberts
, “
Definition of the Rayleigh number for geodynamo simulation
,”
Phys. Earth Planet. Inter.
128
,
13
24
(
2001
).
36.
S.
Labrosse
, “
Thermal evolution of the core with a high thermal conductivity
,”
Phys. Earth Planet. Inter.
247
,
36
55
(
2015
).
37.
Z.
Konôpková
,
R. S.
McWilliams
,
N.
Gómez-Pérez
, and
A. F.
Goncharov
, “
Direct measurement of thermal conductivity in solid iron at planetary core conditions
,”
Nature
534
,
99
101
(
2016
).
38.
T.
Nakagawa
and
P. J.
Tackley
, “
Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal-chemical-phase boundary layer in 3D spherical convection
,”
Earth Planet. Sci. Lett.
271
,
348
358
(
2008
).
39.
P.
Olson
,
R.
Deguen
,
M.
Rudolph
, and
S.
Zhong
, “
Core evolution driven by mantle global circulation
,”
Phys. Earth Planet. Inter.
243
,
44
55
(
2015
).
40.
B.
Sreenivasan
and
V.
Gopinath
, “
Confinement of rotating convection by a laterally varying magnetic field
,”
J. Fluid Mech.
822
,
590
616
(
2017
).
You do not currently have access to this content.