The Richtmyer-Meshkov instability of an unperturbed air/SF6 interface subjected to a diffracted shock is experimentally studied by high-speed schlieren photography under cylindrical circumstances. The cylindrically converging diffracted shock (CCDS) is produced by a cylindrically uniform shock diffracting around a rigid cylinder(s), and the unperturbed interface is created by a soap film technique. The effects of coupling of multiple rigid cylinders and diverse spacings from the cylinder to interface on a flow field are highlighted. Schlieren images indicate that the amplitude of disturbances on the CCDS increases compared with the local shock radius. After the CCDS impact, a bulge is derived from the interface due to the shock-shock interaction inside the interface, and the number of bulges depends upon the number of cylinders. As the number of cylinders increases, the bulge becomes less pronounced, which is ascribed to additional shock-shock interactions inside the volume. As the distance between the cylinder and interface increases, an air cavity is first observed before the formation of a bulge. The amplitude of perturbation on the interface is found to reduce before the central reflected shock arrival because of the Rayleigh-Taylor stabilization effect. Through equating the pre-interface disturbance of the CCDS to the pre-shock perturbation of the perturbed interface, the initially linear growth rate is theoretically computed based on the impulsive model considering the Bell-Plesset effect. The theoretical results are found to deviate greatly from the experimental counterparts. Instead, taking the post-shock interface amplitude as an initial interface amplitude, the model works well. Therefore, the interface perturbations produced are notably smaller than the disturbances causing them. Moreover, the nonlinear behavior of perturbation growth is estimated by the model considering the Rayleigh-Taylor effect.

1.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
319
(
1960
).
2.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
104
(
1969
).
3.
M.
Brouillette
, “
The Richtmyer-Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
,
445
468
(
2002
).
4.
D.
Ranjan
,
J.
Oakley
, and
R.
Bonazza
, “
Shock-bubble interactions
,”
Annu. Rev. Fluid Mech.
43
,
117
140
(
2011
).
5.
J. D.
Lindl
,
O.
Landen
,
J.
Edwards
,
E.
Moses
, and NIC Team, “
Review of the National Ignition Campaign 2009-2012
,”
Phys. Plasmas
21
,
020501
(
2014
).
6.
J.
Yang
,
T.
Kubota
, and
E. E.
Zukoski
, “
Application of shock-induced mixing to supersonic combustion
,”
AIAA J.
31
,
854
862
(
1993
).
7.
G. I.
Bell
, “
Taylor instability on cylinders and spheres in the small amplitude approximation
,” Report No. LA-1321,
LANL
,
1951
.
8.
M. S.
Plesset
, “
On the stability of fluid flows with spherical symmetry
,”
J. Appl. Phys.
25
,
96
98
(
1954
).
9.
Lord Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-14
,
170
177
(
1883
).
10.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,”
Proc. R. Soc. A
201
,
192
196
(
1950
).
11.
R. W.
Perry
and
A.
Kantrowitz
, “
The production and stability of converging shock waves
,”
J. Appl. Phys.
22
(
7
),
878
886
(
1951
).
12.
M.
Watanabe
,
O.
Onodera
, and
K.
Takayama
, “
Shock wave focusing in a vertical annular shock tube
,”
Shock Waves
22
,
99
104
(
1995
).
13.
S. H. R.
Hosseini
,
O.
Ondera
, and
K.
Takayama
, “
Characteristics of an annular vertical diaphragmless shock tube
,”
Shock Waves
10
,
151
158
(
2000
).
14.
S. H. R.
Hosseini
and
K.
Takayama
, “
Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves
,”
Phys. Fluids
17
,
084101
(
2005
).
15.
S. H. R.
Hosseini
and
K.
Takayama
, “
Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube
,”
Shock Waves
20
,
1
7
(
2010
).
16.
P. E.
Dimotakis
and
R.
Samtaney
, “
Planar shock cylindrical focusing by a perfect-gas lens
,”
Phys. Fluids
18
(
3
),
031705
(
2006
).
17.
L.
Biamino
,
G.
Jourdan
,
C.
Mariani
,
L.
Houas
,
M.
Vandenboomgaerde
, and
D.
Souffland
, “
On the possibility of studying the converging Richtmyer-Meshkov instability in a conventional shock tube
,”
Exp. Fluids
56
(
2
),
1
5
(
2015
).
18.
M.
Kjellander
,
N.
Tillmark
, and
N.
Apazidis
, “
Energy concentration by spherical converging shocks generated in a shock tube
,”
Phys. Fluids
24
,
126103
(
2012
).
19.
B.
Skews
,
B.
Gray
, and
R.
Paton
, “
Experimental production of two-dimensional shock waves of arbitrary profile
,”
Shock Waves
25
,
1
10
(
2015
).
20.
B.
Gray
and
B.
Skews
, “
Reflection of a converging cylindrical shock wave segment by a straight wedge
,”
Shock Waves
27
,
551
563
(
2017
).
21.
Z.
Zhai
,
C.
Liu
,
F.
Qin
,
J.
Yang
, and
X.
Luo
, “
Generation of cylindrical converging shock waves based on shock dynamics theory
,”
Phys. Fluids
22
,
041701
(
2010
).
22.
F.
Zhang
,
T.
Si
,
Z.
Zhai
,
X.
Luo
,
J.
Yang
, and
X.
Lu
, “
Reflection of cylindrical converging shock wave over a plane wedge
,”
Phys. Fluids
28
,
086101
(
2016
).
23.
T.
Si
,
Z.
Zhai
, and
X.
Luo
, “
Experimental study of Richtmyer-Meshkov instability in a cylindrical converging shock tube
,”
Laser Part. Beams
32
,
343
351
(
2014
).
24.
Z.
Zhai
,
W.
Li
,
T.
Si
,
X.
Luo
,
J.
Yang
, and
X.
Lu
, “
Refraction of cylindrical converging shock wave at an air/helium gaseous interface
,”
Phys. Fluids
29
,
016102
(
2017
).
25.
T.
Si
,
T.
Long
,
Z.
Zhai
, and
X.
Luo
, “
Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder
,”
J. Fluid Mech.
784
,
225
251
(
2015
).
26.
X.
Luo
,
J.
Ding
,
M.
Wang
,
Z.
Zhai
, and
T.
Si
, “
A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability
,”
Phys. Fluids
27
(
9
),
091702
(
2015
).
27.
J.
Ding
,
T.
Si
,
J.
Yang
,
X.
Lu
,
Z.
Zhai
, and
X.
Luo
, “
Measurement of a Richtmyer-Meshkov instability at an air-SF6 interface in a semiannular shock tube
,”
Phys. Rev. Lett.
119
,
014501
(
2017
).
28.
R.
Ishizaki
,
K.
Nishihara
,
H.
Sakagami
, and
Y.
Ueshima
, “
Instability of a contact surface driven by a nonuniform shock wave
,”
Phys. Rev. E
53
,
R5592
R5595
(
1996
).
29.
R.
Ishizaki
and
K.
Nishihara
, “
Propagation of a rippled shock wave driven by nonuniform laser ablation
,”
Phys. Rev. Lett.
78
,
1920
1923
(
1997
).
30.
N.
Matsui
,
K.
Mima
,
M.
Honda
, and
A.
Nishiguchi
, “
Analysis of rippled shock-wave propagation and ablation-front stability by theory and hydrodynamic simulation
,”
J. Plasma Phys.
61
,
43
50
(
1999
).
31.
T.
Endo
,
K.
Shigemori
,
H.
Azechi
,
A.
Nishiguchi
,
K.
Mima
,
M.
Sato
,
M.
Nakai
,
S.
Nakaji
,
N.
Miyanaga
,
S.
Matsuoka
,
A.
Ando
,
K. A.
Tanaka
, and
S.
Nakai
, “
Dynamic behavior of rippled shock waves and subsequently induced areal-density-perturbation growth in laser-irradiated foils
,”
Phys. Rev. Lett.
74
,
3608
3611
(
1995
).
32.
J. O.
Kane
,
H. F.
Robey
,
B. A.
Remington
,
R. P.
Drake
,
J.
Knauer
,
D. D.
Ryutov
,
H.
Louis
,
R.
Teyssier
,
O.
Hurricane
,
D.
Arnett
,
R.
Rosner
, and
A.
Calder
, “
Interface imprinting by a rippled shock using an intense laser
,”
Phys. Rev. E
63
,
055401(R)
(
2001
).
33.
L.
Zou
,
J.
Liu
,
S.
Liao
,
X.
Zheng
,
Z.
Zhai
, and
X.
Luo
, “
Richtmyer-Meshkov instability of a flat interface subjected to a rippled shock wave
,”
Phys. Rev. E
95
,
013107
(
2017
).
34.
W.
Chester
, “
The quasi-cylindrical shock tube
,”
London Edinburgh Philos. Mag. J. Sci.
45
,
1293
1301
(
1954
).
35.
R. F.
Chisnell
, “
The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves
,”
J. Fluid Mech.
2
,
286
298
(
1957
).
36.
G. B.
Whitham
, “
A new approach to problems of shock dynamics. Part I. Two-dimensional problems
,”
J. Fluid Mech.
2
,
145
171
(
1957
).
37.
D. W.
Schwendeman
and
G. B.
Whitham
, “
On converging shock waves
,”
Proc. R. Soc. London, Ser. A
413
,
297
311
(
1987
).
38.
E. N.
Fuller
,
P. D.
Schettler
, and
J. C.
Giddings
, “
New method for prediction of binary gas-phase diffusion coefficients
,”
Ind. Eng. Chem.
58
,
18
27
(
1966
).
39.
A.
Fick
, “
Ueber diffusion
,”
Ann. Phys. Chem.
170
,
59
86
(
1855
).
40.
K. O.
Mikaelian
, “
Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified cylindrical shells
,”
Phys. Fluids
17
,
094105
(
2005
).
You do not currently have access to this content.