While conventional vortex-induced vibration (VIV) of bluff bodies is suppressed through reducing the strength of asymmetric vortex shedding, it can also be mitigated by shifting the vortex shedding frequency away from the natural frequency of the body structures using active lock-on. Recently Du and Sun [“Suppression of vortex-induced vibration using the rotary oscillation of a cylinder,” Phys. Fluids 27, 023603 (2015)] utilized periodical rotation to induce the lock-on of the frequency of vortex shedding from a transversely vibrating cylinder to the rotation frequency and demonstrated successful VIV suppression. However, questions were raised from this investigation: Does the occurrence of active lock-on always suppress VIV? If not, how to ensure the appropriate usage of active lock-on for VIV suppression? To address these research questions, a numerical investigation is conducted on the active VIV control of a circular cylinder using a pair of synthetic jets (SJs) at a low Reynolds number of 100. The SJ pair operates with various phase differences over a wide frequency range so that the influence of various lock-on can be investigated. It is found that the VIV control can be affected not only by the occurrence of the primary lock-on but also by the occurrence of other lock-on such as secondary and tertiary lock-on. The occurrence of lock-on does not always result in successful VIV suppression. Sometimes it even causes the augmentation of VIV. Compared to the VIV suppression using the conventional vortex-strength-reduction method, the control by the means of active lock-on seems less effective.

1.
H.
Choi
,
W. P.
Jeon
, and
J. S.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
139
(
2008
).
2.
M. M.
Zdravkovich
, “
Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding
,”
J. Wind Eng. Ind. Aerodyn.
7
,
145
189
(
1981
).
3.
H.
Oertel
, Jr.
, “
Wakes behind blunt bodies
,”
Annu. Rev. Fluid Mech.
22
,
539
562
(
1990
).
4.
O. M.
Griffin
and
M. S.
Hall
, “
Review-vortex shedding lock-on and flow control in bluff body wakes
,”
J. Fluids Eng.
113
,
526
537
(
1991
).
5.
I.
Korkischko
and
J. R.
Meneghini
, “
Suppression of vortex-induced vibration using moving surface boundary-layer control
,”
J. Fluids Struct.
34
,
259
270
(
2012
).
6.
S.
Dong
,
G. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
Elimination of vortex streets in bluff-body flows
,”
Phys. Rev. Lett.
100
,
204501
(
2008
).
7.
C.
Wang
,
H.
Tang
,
S.
Yu
, and
F.
Duan
, “
Active control of vortex-induced vibrations of a circular cylinder using windward-suction-leeward-blowing actuation
,”
Phys. Fluids
28
,
053601
(
2016
).
8.
C.
Wang
,
H.
Tang
,
F.
Duan
, and
S.
Yu
, “
Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets
,”
J. Fluids Struct.
60
,
160
179
(
2016
).
9.
W. L.
Chen
,
H.
Li
, and
H.
Hu
, “
An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder
,”
Exp. Fluids
55
,
1
20
(
2014
).
10.
K. B.
Skaugset
and
C. M.
Larsen
, “
Direct numerical simulation and experimental investigation on suppression of vortex induced vibrations of circular cylinders by radial water jets
,”
Flow, Turbul. Combust.
71
,
35
59
(
2003
).
11.
L.
Du
and
X.
Sun
, “
Suppression of vortex-induced vibration using the rotary oscillation of a cylinder
,”
Phys. Fluids
27
,
023603
(
2015
).
12.
S. J.
Baek
and
H. J.
Sung
, “
Quasi-periodicity in the wake of a rotationally oscillating cylinder
,”
J. Fluid Mech.
408
,
275
300
(
2000
).
13.
S. J.
Baek
,
S. B.
Lee
, and
H. J.
Sung
, “
Response of a circular cylinder wake to superharmonic excitation
,”
J. Fluid Mech.
442
,
67
88
(
2001
).
14.
J. S.
Leontini
,
D. L.
Jacono
, and
M. C.
Thompson
, “
Wake states and frequency selection of a streamwise oscillating cylinder
,”
J. Fluid Mech.
730
,
162
192
(
2013
).
15.
C.
Wang
,
H.
Tang
,
S.
Yu
, and
F.
Duan
, “
Lock-on of vortex shedding to a pair of synthetic jets with phase difference
” (unpublished).
16.
L.
Du
,
X.
Jing
, and
X.
Sun
, “
Modes of vortex formation and transition to three-dimensionality in the wake of a freely vibrating cylinder
,”
J. Fluids Struct.
49
,
554
573
(
2014
).
17.
R.
Govardhan
and
C.
Williamson
, “
Modes of vortex formation and frequency response of a freely vibrating cylinder
,”
J. Fluid Mech.
420
,
85
130
(
2000
).
18.
S. S.
Rao
and
F. F.
Yap
,
Mechanical Vibrations
, 5th ed. (
Prentice Hall
,
2011
), Vol. 4.
19.
R.
Bourguet
and
D.
Lo Jacono
, “
In-line flow-induced vibrations of a rotating cylinder
,”
J. Fluid Mech.
781
,
127
165
(
2015
).
20.
P.
Lallemand
and
L.
Luo
, “
Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, galilean invariance, and stability
,”
Phys. Rev. E
61
,
6546
6562
(
2000
).
21.
D.
Yu
,
R.
Mei
, and
W.
Shyy
, “
A multi-block lattice Boltzmann method for viscous fluid flows
,”
Int. J. Numer. Methods Fluids
39
,
99
120
(
2002
).
22.
P.
Lallemand
and
L. S.
Luo
, “
Lattice Boltzmann method for moving boundaries
,”
J. Comput. Phys.
184
,
406
421
(
2003
).
23.
Y.
Chen
,
Q.
Cai
,
Z.
Xia
,
M.
Wang
, and
S.
Chen
, “
Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions
,”
Phys. Rev. E
88
,
013303
(
2013
).
24.
S.
Izquierdo
and
N.
Fueyo
, “
Characteristic nonreflecting boundary conditions for open boundaries in lattice Boltzmann methods
,”
Phys. Rev. E
78
,
046707
(
2008
).
25.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
26.
C. H. K.
Williamson
and
A.
Roshko
, “
Vortex formation in the wake of an oscillating cylinder
,”
J. Fluids Struct.
2
,
355
381
(
1988
).
27.
C. W.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
28.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
29.
T.
Sayadi
,
P.
Schmid
,
J. W.
Nichols
, and
P.
Moin
, “
Dynamic mode decomposition of controlled h-and k-type transitions
,”
Annu. Res. Briefs
2013
,
189–200
, available at https://web.stanford.edu/group/ctr/ResBriefs/2013/14_sayadi.pdf.
You do not currently have access to this content.