The proposed flow in a 3-D cubic cavity is driven by its parallel walls moving in perpendicular directions to create a genuinely three-dimensional highly separated vortical flow, yet having simple single-block cubical geometry of computational domain. The elevated level of helicity is caused by motion of a wall in the direction of axis of primary vortex created by a parallel wall. The velocity vector field is obtained numerically by using second-order upwind scheme and 2003 grid. Helicity, magnitude of normalized helicity, and kinematic vorticity number are evaluated for Reynolds numbers ranging from 100 to 1000. Formation of two primary vortices with their axis oriented perpendicularly and patterns of secondary vortices are discussed. Computational results are compared to the well-known 3-D recirculating cavity flow case where the lid moves in the direction parallel to the cavity side walls. Also results are compared to the diagonally top-driven cavity and to the cavity flow driven by moving top and side walls. The streamlines for the proposed flow show that the particles emerging from top and bottom of the cavity do mix well. Quantitative evaluation of mixing of two fluids in the proposed cavity flow confirms that mixing occurs faster than in the benchmark case.

1.
D. M.
Kalyon
, “
Mixing in continuous processors
,” in
Encyclopedia of Fluid Mechanics
(
Gulf Publishing
,
1988
), Vol. 7, Chap. 28, pp.
887
926
, see http://www.hfmi.stevens.edu/publications/174.PDF, retrieved 6 June 2017.
2.
H.
Wang
,
P.
Iovenitti
,
E.
Harvey
, and
S.
Masood
, “
Numerical investigation of mixing in microchannels with patterned grooves
,”
J. Micromech. Microeng.
13
(
6
),
801
(
2003
).
3.
A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices, microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
4.
G. B.
Salieb-Beugelaar
,
D.
Gonçalves
,
M. P.
Wolf
, and
P.
Hunziker
, “
Microfluidic 3D helix mixers
,”
Micromachines
7
,
189
(
2016
).
5.
P.
Vilkinis
,
M.
Valantinavicius
, and
N.
Pedisius
, “
Investigation of fluid flow structure in open type cavity under stationary and pulsatile flow conditions
,”
Energetika
62
(
1–2
),
37
44
(
2016
).
6.
P. N.
Shankar
and
M. D.
Deshpande
, “
Fluid mechanics in the driven cavity
,”
Annu. Rev. Fluid Mech.
32
,
93
136
(
2000
).
7.
H. K.
Moffatt
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
35
(
1
),
117
129
(
1969
).
8.
A.
Tsynober
,
The Essence of Turbulence as a Physical Phenomenonx
(
Springer
,
2014
).
9.
H. K.
Moffatt
and
A.
Tsinober
, “
Helicity in laminar and turbulent flow
,”
Annu. Rev. Fluid Mech.
24
,
281
312
(
1992
).
10.
M. W.
Scheelera
,
D.
Klecknera
,
D.
Proment
,
G. L.
Kindlmann
, and
W. T. M.
Irvine
, “
Helicity conservation by flow across scales in reconnecting vortex links and knots
,”
Proc. Natl. Acad. Sci.
111
(
43
),
15350
15355
(
2014
).
11.
A.
Pouquet
and
P. D.
Minni
, “
The interplay between helicity and rotation in turbulence: Implications for scaling laws and small-scale dynamics
,”
Philos. Trans. R. Soc., A
368
,
1635
1662
(
2010
).
12.
V. I.
Arnold
and
B. A.
Khesin
,
Topological Methods in Hydrodynamics
(
Springer-Verlag
,
1998
).
13.
M. A.
Olshanskii
and
L. G.
Rebholz
, “
Velocity–vorticity–helicity formulation and a solver for the Navier–Stokes equations
,”
J. Comput. Phys.
229
,
4291
4303
(
2010
).
14.
Y.
Levy
,
D.
Degani
, and
A.
Seginer
, “
Graphical visualization of vortical flows by means of helicity
,”
AIAA J.
28
(
8
),
1347
1352
(
1990
).
15.
S.
Arun
and
A.
Satheesh
, “
Analysis of flow behavior in a two sided lid driven cavity using lattice Boltzmann technique
,”
Alexandria Eng. J.
54
,
795
806
(
2015
).
16.
R.
Iwatsu
,
K.
Ishii
,
T.
Kawanura
, and
K.
Kuwahara
, “
Numerical simulation of three-dimensional flow structure in a driven cavity
,”
Fluid Dyn. Res.
5
,
173
189
(
1989
).
17.
F.
Giannetti
,
P.
Luchini
, and
L.
Marino
,
Linear Stability Analysis of Three-Dimensional Lid-Driven Cavity Flow, Atti del XIX Congresso AIMETA di Meccanica Teorica e Applicata
(
Aras Edizioni Ancona
,
Italy
,
2009
), see http://www.dipmat.univpm.it/aimeta2009/Atti%20Congresso/SESSIONI_SPECIALI/Marino_paper277.pdf, retrieved 6 June 2017.
18.
A.
Povitsky
, “
Three-dimensional flow in cavity at yaw
,”
Nonlinear Anal.: Theory Methods Appl.
63
,
e1573
e1584
(
2005
); preliminary versions: AIAA Paper 2001-2847, 2001, Technical Report No. 211232, NASA/CR, 2001, ICASE Report No. 2001-31.
19.
P.
Kosinski
,
A.
Kosinska
, and
A. C.
Hoffmann
, “
Simulation of solid particles behavior in a driven cavity flow
,”
Powder Technol.
191
(
3
),
327
339
(
2009
).
20.
Y.-H.
Ryu
and
J.-J.
Baik
, “
Flow and dispersion in an urban cubical cavity
,”
Atmos. Environ.
43
(
10
),
1721
1729
(
2009
).
21.
P.
Asinari
,
T.
Ohwada
,
E.
Chiavazzo
, and
A. F.
Di Rienzo
, “
Link-wise artificial compressibility method
,”
J. Comput. Phys.
231
(
15
),
5109
5143
(
2012
).
22.
S. A.
Melchior
,
V.
Legat
,
P.
van Dooren
, and
A. J.
Wathen
, “
Analysis of preconditioned iterative solvers for incompressible flow problems
,”
Int. J. Numer. Methods Fluids
68
(
3
),
269
286
(
2012
).
23.
R. K.
Freitas
,
A.
Henze
,
M.
Meinke
, and
W.
Schröder
, “
Analysis of lattice-Boltzmann methods for internal flows
,”
Comput. Fluids
47
(
1
),
115
121
(
2011
).
24.
Y.
Feldman
, “
Theoretical analysis of three-dimensional bifurcated flow inside a diagonally lid-driven cavity
,”
Theor. Comput. Fluid Dyn.
29
(
4
),
245
261
(
2015
).
25.
B. B.
Beya
and
T.
Lili
, “
Three-dimensional incompressible flow in a two-sided non-facing lid-driven cubical cavity
,”
C. R. Mec.
336
,
863
(
2008
).
26.
A.
Liberzon
,
Yu.
Feldman
, and
A. Yu.
Gelfgat
, “
Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity
,”
Phys. Fluids
23
,
084106
(
2011
); e-print arXiv:1107.0449, retrieved 6 June 2017.
27.
M. Y. S.
Al-Shannag
, “
Experimental and numerical investigation of the flow in a toroidal cavity
,” Ph.D. dissertation (
Chemical Engineering
,
Tarragona, Spain
,
2002
).
28.
J.
Cushner
, “
Experimental visualization of a shear-driven-cavity problem
,” M.S. thesis,
College of Engineering, Bucknell University
,
Lewisburg, Pennsylvania
,
2000
.
29.
T.
Barth
and
J.
Jespersen
, “
The design and application of upwind schemes on unstructured meshes
,” AIAA Paper No. 89-0366,
1989
.
30.
S.
Patankar
,
Numerical Heat Transfer and Fluid Flow
(
CRC Press
,
1980
).
31.
ANSYS Fluent guide, ANSYS, Inc., Version 17, PDF Documentation,
2017
.
32.
B.
Jiang
,
T. L.
Lin
, and
L. A.
Povinelli
, “
Large-scale computation of incompressible viscous flow by least-squares finite element method
,”
Comput. Methods Appl. Mech. Eng.
114
,
213
231
(
1994
).
33.
G.
Guy
and
F.
Stella
, “
A vorticity-velocity method for the numerical solution of 3D incompressible flows
,”
J. Comput. Phys.
106
,
286
289
(
1993
).
34.
J.-Y.
Yang
,
S.-C.
Yang
,
Y.-N.
Chen
, and
C.-A.
Hsu
, “
Implicit weighted ENO schemes for the three-dimensional incompressible Navier–Stokes equations
,”
J. Comput. Phys.
146
,
464
487
(
1998
).
35.
H. C.
Ku
,
R. S.
Hirsch
, and
T.
Taylor
, “
A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations
,”
J. Comput. Phys.
70
,
439
472
(
1987
).
36.
J. R.
Koseff
and
R. L.
Street
, “
On end wall effects in a lid-driven cavity flow
,”
ASME J. Fluids Eng.
106
,
390
(
1984
).
37.
U.
Ghia
,
K. H.
Ghia
, and
C. T.
Shin
, “
High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
,
387
411
(
1982
).
38.
R.
Schreiber
and
H. B.
Keller
, “
Driven cavity flows by effective numerical techniques
,”
J. Comput. Phys.
49
,
310
(
1983
).
39.
Q.
Chen
,
Q.
Zhong
,
M.
Qi
, and
X.
Wang
, “
Comparison of vortex identification criteria for planar velocity fields in wall turbulence
,”
Phys. Fluids
27
,
085101
(
2015
).
40.
Y.
Zhang
,
K.
Liu
,
H.
Xian
, and
X.
Du
, “
A review of methods for vortex identification in hydroturbines
,”
Renewable Sustainable Energy Rev.
(in press).
41.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, stream, and convergence zones in turbulent flows
,” Report CTR-S88,
Center for Turbulence Research
,
1988
, pp.
193
208
.
42.
C.
Truesdell
, “
Two measures of vorticity
,”
J. Ration. Mech. Anal.
3
,
593
616
(
1953
).
43.
B.
Tikoff
, “
The limitations of three-dimensional kinematic vorticity analysis
,”
J. Struct. Geol.
17
(
12
),
1771
1784
(
1995
).
44.
V.
Holmén
, “
Methods for vortex identification
,” M.S. thesis,
Mathematical Sciences, Lund University
,
Sweden
,
2012
.
45.
L.
Schielicke
,
P.
Névir
, and
U.
Ulbrich
, “
Kinematic vorticity number—A tool for estimating vortex sizes and circulations
,”
Tellus A: Dyn. Meteorol. Oceanogr.
68
(
1)
,
29464
(
2016
).
46.
R. D. A.
Bacchi
and
R. L.
Thompson
, “
Objective vortex identification criteria in chaotic and turbulent flows
,” in
Proceedings of the 13th Brazilian Congress of Thermal Sciences and Engineering, Brazil
,
2010
.
You do not currently have access to this content.