Ocean-scale sediment dispersion and sedimentation problems are studied using the Smoothed Particle Hydrodynamics (SPH). A SPH formulation based on a mixture model for two-phase flows is developed to investigate the problem. The sediment mass transport via the settling advection and the turbulent diffusion of the suspended sediment are fully accounted for in the current SPH model. The simulations are carried out in an opened boundary domain with a unidirectional underlined current, with relevant deposition/re-suspension boundary conditions on the seafloor. The factors influencing the sedimentation process, such as the hindering and the bottom shear stress effects, are also considered. The simulation results reveal that the sediment convection near the sediment source location is caused by both the ocean current and secondary density driven flows that are created by the concurrent settling motion of suspended sediment particles, while the downstream sediment transport in the far field is only driven by the ocean current. The peak sediment concentration in the ambient ocean water is found to correlate with the sediment release rate, and the settlement rate is inversely proportional to the initial height of the disturbed sediment.

1.
H. U.
Oebius
,
H. J.
Becker
,
S.
Rolinski
, and
J. A.
Jankowski
, “
Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining
,”
Deep Sea Res., Part II
48
,
3453
3467
(
2001
).
2.
B.
Grupe
,
H. J.
Becker
, and
H. U.
Oebius
, “
Geotechnical and sedimentological investigations of deep-sea sediments from a manganese nodule field of the Peru Basin
,”
Deep Sea Res., Part II
48
,
3593
3608
(
2001
).
3.
H.
Klein
, “
Near-bottom currents in the deep Peru Basin, DISCOL experimental area
,”
Dtsch. Hydrogr. Z.
45
,
31
42
(
1993
).
4.
D. D.
Trueblood
,
E.
Ozturgut
,
M.
Pilipchuk
, and
I. F.
Gloumov
, “
The ecological impacts of the joint U.S.-Russian benthic impact experiment
,” in
Proceedings of Second ISOPE Ocean Mining Symposium, 24-26 November 1997, Seoul, Korea
(
International Society of Offshore and Polar Engineers
,
1997
).
5.
L. A.
Van
, “
Modélisation du transport des sédiments mixtes sable-vase et application à la morphodynamique de l’estuaire de la gironde
,” Ph.D. thesis,
The University of Paris-Est
,
2012
.
6.
R.
Periáñez
and
A. J.
Elliott
, “
A particle-tracking method for simulating the dispersion of non-conservative radionuclides in coastal waters
,”
J. Environ. Radioact.
58
,
13
33
(
2002
).
7.
T. X.
Ho
,
N.
Phan-Thien
, and
B. C.
Khoo
, “
Destabilization of clouds of monodisperse and polydisperse particles falling in a quiescent and viscous fluid
,”
Phys. Fluids
28
(
6
),
063305
(
2016
).
8.
M.
Robinson
,
M.
Ramaioli
, and
S.
Luding
, “
Fluid-particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation
,”
Int. J. Multiphase Flow
59
,
121
134
(
2014
).
9.
M.
Ishii
and
T.
Hibiki
,
Thermo-Fluid Dynamics of Two-Phase Flow
(
Springer
,
New York
,
2011
).
10.
L. B.
Lucy
, “
Numerical approach to testing the fission hypothesis
,”
Astron. J.
82
,
1013
1024
(
1977
).
11.
R. A.
Gingold
and
J. J.
Monaghan
, “
Smoothed particle hydrodynamics: Theory and applications to non-spherical stars
,”
Mon. Not. R. Astron. Soc.
181
,
375
389
(
1977
).
12.
F.
Aristodemo
,
I.
Federio
,
P.
Veltri
, and
A.
Panizzo
, “
Two-phase SPH modelling of advective diffusion processes
,”
Environ. Fluid Mech.
10
,
451
470
(
2010
).
13.
A.
Shakibaeinia
and
Y.-C.
Jin
, “
Lagrangian multiphase modeling of sand discharge into still water
,”
Adv. Water Resour.
48
,
55
67
(
2012
).
14.
S.
Zou
, “
Coastal sediment transport simulation by smoothed particle hydrodynamics
,” Ph.D. thesis,
The Johns Hopkins University
,
2007
.
15.
T.
Tran-Duc
,
E. L.
Bertevas
,
N.
Phan-Thien
, and
B. C.
Khoo
, “
Simulations of anisotropically diffusing processes in fluids with smoothed particle hydrodynamics
,”
Int. J. Numer. Methods Fluids
82
(
11
),
730
747
(
2016
).
16.
G. R.
Liu
and
M. B.
Liu
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
(
World Scientific
,
Singapore
,
2003
).
17.
D.
Violeau
,
Fluid Mechanics and the SPH Method: Theory and Applications
(
Oxford University Press
,
UK
,
2012
).
18.
J. P.
Morris
,
P. J.
Fox
, and
Y.
Zhu
, “
Modeling low Reynolds number incompressible flows using SPH
,”
J. Comput. Phys.
136
,
214
226
(
1997
).
19.
I. M.
Krieger
and
T. J.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
20.
J. C.
van der Werff
and
C. G.
de Kruif
, “
Hardsphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rate
,”
J. Rheol.
33
,
421
454
(
1989
).
21.
N.
Phan-Thien
and
D.
Pham
, “
Differential multiphase models for polydispersed spheroidal inclusions: Thermal conductivity and effective viscosity
,”
Int. J. Eng. Sci.
38
(
1
),
73
88
(
2000
).
22.
L. C.
van Rijn
,
Principles of Sediment Transport in Rivers, Estuaries, and Coastal Seas
(
Aqua Publication
,
The Netherlands
,
1993
).
23.
W.
Rodi
,
Turbulence Models and Their Application in Hydraulics: A State of the Art Review
(
CRC Press
,
The Netherlands
,
1993
).
24.
J. A.
Jankowski
,
A.
Malcherek
, and
W.
Zielke
, “
Numerical modeling of suspended sediment due to deep-sea mining
,”
J. Geophys. Res.: Oceans
101
(
C2
),
3545
3560
, (
1996
).
25.
I. N.
McCave
, “
Size spectra and aggregation of suspended particles in the deep ocean
,”
Deep Sea Res., Part I
31
(
4
),
329
352
(
1984
).
26.
J. F.
Richardson
and
W. N.
Zaki
, “
Sedimentation and fluidization: Part I
,”
Chem. Eng. Res. Des.
75
,
S82
S100
(
1997
).
27.
A. J.
Mehta
and
E.
Partheniades
, “
An investigation of the depositional properties of flocculated fine sediments
,”
J. Hydraul. Res.
13
(
4
),
361
381
(
1975
).
28.
T. M.
Parchure
and
A. J.
Mehta
, “
Erosion of soft cohesive sediment deposits
,”
J. Hydraul. Eng.
111
(
10
),
1308
1326
(
1985
).
29.
J. C.
Winterwerp
,
W. G. M.
van Kesteren
,
B.
van Prooijen
, and
W.
Jacobs
, “
A conceptual framework for shear flow-induced erosion of soft cohesive sediment beds
,”
J. Geophys. Res.: Oceans
117
,
C10020
, (
2012
).
30.
P.
Aussillous
,
J.
Chauchat
,
M.
Pailha
,
M.
Médale
, and
E.
Guazzelli
, “
An investigation of the mobile granular layer in bedload transport by laminar shearing flows
,”
J. Fluid Mech.
736
,
594
615
(
2013
).
31.
M.
Houssais
,
C. P.
Ortiz
,
D. J.
Durian
, and
D. J.
Jerolmack
, “
Rheology of sediment transported by a laminar flow
,”
Phys. Rev. E
94
,
062609
(
2016
).
32.
T. C.
Papanastasiou
, “
Flows of materials with yield
,”
J. Rheol.
31
,
385
404
(
1987
).
33.
E. A.
Toorman
, “
Modelling of thixotropic behaviour
,”
Rheol. Acta
36
,
56
65
(
1997
).
34.
O.
Durán
,
B.
Andreotti
, and
P.
Claudin
, “
Numerical simulation of turbulent sediment transport, from bed load to saltation
,”
Phys. Fluids
24
,
103306
(
2012
).
35.
J. J.
Monaghan
, “
Simulating free surface flows with SPH
,”
J. Comput. Phys.
110
,
399
406
(
1994
).
36.
S.
Adami
,
X. Y.
Hu
, and
N. A.
Adams
, “
A generalized wall boundary condition for smoothed particle hydrodynamics
,”
J. Comput. Phys.
231
,
7057
7075
(
2012
).
37.
M.
Lastiwka
,
M.
Basa
, and
N. J.
Quinlan
, “
Permeable and non-reflecting boundary conditions in SPH
,”
Int. J. Numer. Methods Fluids
61
,
709
724
(
2009
).
38.
S. M.
Hosseini
and
J. J.
Feng
, “
Pressure boundary conditions for computing incompressible flows with SPH
,”
J. Comput. Phys.
230
,
7473
7487
(
2011
).
39.
R. M.
Cabezón
,
D.
García-Senz
, and
A.
Relaño
, “
A one-parameter family of interpolating kernels for smoothed particle hydrodynamics studies
,”
J. Comput. Phys.
227
,
8523
8540
(
2008
).
40.
J. A.
Jankowski
and
W.
Zielke
, “
The mesoscale sediment transport due to technical activities in the deep sea
,”
Deep Sea Res., Part II
48
,
3487
3521
(
2001
).
41.
P. Y.
Caux
,
D. R. J.
Moore
, and
D.
MacDonald
,
Technical Appendix: Ambient Water Quality Guidelines (Criteria) for Turbidity, Suspended and Benthic Sediments
(
Canadian Cataloguing in Publication Data
,
1997
), ISBN: 0-7726-3797-0.
You do not currently have access to this content.