A useable model for laminar free-surface jet evolution during flight, for both horizontal and vertical jets, is developed through joint analytical, experimental, and simulation methods. The jet’s impingement centerline velocity, recently shown to dictate stagnation zone heat transfer, encompasses the entire flow history: from pipe-flow velocity profile development to profile relaxation and jet contraction during flight. While pipe-flow is well-known, an alternative analytic solution is presented for the centerline velocity’s viscous-driven decay. Jet-contraction is subject to influences of surface tension (We), pipe-flow profile development, in-flight viscous dissipation (Re), and gravity (Nj = Re/Fr). The effects of surface tension and emergence momentum flux (jet thrust) are incorporated analytically through a global momentum balance. Though emergence momentum is related to pipe flow development, and empirically linked to nominal pipe flow-length, it can be modified to incorporate low-Re downstream dissipation as well. Jet contraction’s gravity dependence is extended beyond existing uniform-velocity theory to cases of partially and fully developed profiles. The final jet-evolution model relies on three empirical parameters and compares well to present and previous experiments and simulations. Hence, micro-jet flight experiments were conducted to fill-in gaps in the literature: jet contraction under mild gravity-effects, and intermediate Reynolds and Weber numbers (Nj = 5–8, Re = 350–520, We = 2.8–6.2). Furthermore, two-phase direct numerical simulations provided insight beyond the experimental range: Re = 200–1800, short pipes (Z = L/d · Re ≥ 0.01), variable nozzle wettability, and cases of no surface tension and/or gravity.

1.
Adachi
,
K.
, “
Laminar jets of a plane liquid sheet falling vertically in the atmosphere
,”
J. Non-Newtonian Fluid Mech.
24
(
1
),
11
30
(
1987
).
2.
Adachi
,
K.
,
Tagashira
,
K.
,
Banba
,
Y.
,
Tatsumi
,
H.
,
Machida
,
H.
, and
Yoshioka
,
N.
, “
Steady laminar round jets of a viscous liquid falling vertically in the atmosphere
,”
AIChE J.
36
(
5
),
738
745
(
1990
).
3.
Anno
,
J. N.
,
The Mechanics of Liquid Jets
(
DC Heath and Co.
,
Lexington, Massachusetts
,
1977
), p.
118
.
4.
Atabek
,
B. H.
, Ph.D. thesis,
University of Minnesota
,
Minneapolis
,
1961
, Dissertation Abstracts International, Vol. 22–06, p.
2031
.
5.
Bhunia
,
A.
and
Chen
,
C. L.
, “
On the scalability of liquid microjet array impingement cooling for large area systems
,”
J. Heat Transfer
133
(
6
),
064501
(
2011
).
6.
Bohr
,
N.
, “
Determination of the surface-tension of water by the method of jet vibration
,”
Philos. Trans. R. Soc., A
209
,
281
317
(
1909
).
7.
Clarke
,
N. S.
, “
Two-dimensional flow under gravity in a jet of viscous liquid
,”
J. Fluid Mech.
31
(
3
),
481
500
(
1968
).
8.
Davies
,
J. M.
,
Hutton
,
J. F.
, and
Walters
,
K.
, “
A critical re-appraisal of the jet-thrust technique for normal stresses, with particular reference to axial velocity and stress rearrangement at the exit plane
,”
J. Non-Newtonian Fluid Mech.
3
(
2
),
141
160
(
1977
).
9.
Duda
,
J. L.
and
Vrentas
,
J. S.
, “
Fluid mechanics of laminar liquid jets
,”
Chem. Eng. Sci.
22
(
6
),
855
869
(
1967
).
10.
Durst
,
F.
,
Ray
,
S.
,
Ünsal
,
B.
, and
Bayoumi
,
O. A.
, “
The development lengths of laminar pipe and channel flows
,”
J. Fluids Eng.
127
(
6
),
1154
1160
(
2005
).
11.
Ellison
,
B.
and
Webb
,
B. W.
, “
Local heat transfer to impinging liquid jets in the initially laminar, transitional, and turbulent regimes
,”
Int. J. Heat Mass Transfer
37
(
8
),
1207
1216
(
1994
).
12.
Gavis
,
J.
, “
Contribution of surface tension to expansion and contraction of capillary jets
,”
Phys. Fluids
7
(
7
),
1097
1098
(
1964
).
13.
Gavis
,
J.
and
Modan
,
M.
, “
Expansion and contraction of jets of Newtonian liquids in air: Effect of tube length
,”
Phys. Fluids
10
(
3
),
487
497
(
1967
).
14.
Georgiou
,
G. C.
,
Papanastasiou
,
T. C.
, and
Wilkes
,
J. O.
, “
Laminar Newtonian jets at high Reynolds number and high surface tension
,”
AIChE J.
34
(
9
),
1559
1562
(
1988
).
15.
Goren
,
S. L.
and
Wronski
,
S.
, “
The shape of low-speed capillary jets of Newtonian liquids
,”
J. Fluid Mech.
25
(
01
),
185
198
(
1966
).
16.
Harmon
,
D. B.
, “
Drop sizes from low speed jets
,”
J. Franklin Inst.
259
(
6
),
519
522
(
1955
).
17.
Haustein
,
H. D.
,
Tebrügge
,
G.
,
Rohlfs
,
W.
, and
Kneer
,
R.
, “
Local heat transfer coefficient measurement through a visibly-transparent heater under jet-impingement cooling
,”
Int. J. Heat Mass Transfer
55
(
23
),
6410
6424
(
2012
).
18.
Holmes
,
G. C.
, “
The use of hyperbolic cosines in solving cubic polynomials
,”
Math. Gaz.
86
(
507
),
473
477
(
2002
).
19.
Hornbeck
,
R. W.
, “
Laminar flow in the entrance region of a pipe
,”
Appl. Sci. Res., Sect. A
13
(
1
),
224
232
(
1964
).
20.
Ku
,
H. C.
and
Hatziavramidis
,
D.
, “
Solutions of the two-dimensional Navier-Stokes equations by Chebyshev expansion methods
,”
Comput. Fluids
13
(
1
),
99
113
(
1985
).
21.
Langhaar
,
H. L.
, “
Steady flow in the transition length of a straight tube
,”
J. Appl. Mech.
9
(
2
),
55
58
(
1942
).
22.
Lienhard
,
J. H.
, “
Effects of gravity and surface tension upon liquid jets leaving Poiseuille tubes
,”
J. Basic Eng.
90
,
262
(
1968
).
23.
Ma
,
C. F.
,
Gan
,
Y. P.
,
Tian
,
Y. C.
,
Lei
,
D. H.
, and
Gomi
,
T.
, “
Liquid jet impingement heat transfer with or without boiling
,”
J. Therm. Sci.
2
(
1
),
32
49
(
1993
).
24.
Ma
,
C. F.
,
Zheng
,
Q.
,
Sun
,
H.
,
Wu
,
K.
,
Gomi
,
T.
, and
Webb
,
B. W.
, “
Local characteristics of impingement heat transfer with oblique round free-surface jets of large Prandtl number liquid
,”
Int. J. Heat Mass Transfer
40
(
10
),
2249
2259
(
1997
).
25.
Massalha
,
T.
and
Digilov
,
R. M.
, “
The shape function of a free-falling laminar jet: Making use of Bernoulli’s equation
,”
Am. J. Phys.
81
(
10
),
733
737
(
2013
).
26.
Middleman
,
S.
and
Gavis
,
J.
, “
Expansion and contraction of capillary jets of Newtonian liquids
,”
Phys. Fluids
4
(
3
),
355
359
(
1961
).
27.
Mitrovic
,
J.
and
Ricoeur
,
A.
, “
Fluid dynamics and condensation-heating of capillary liquid jets
,”
Int. J. Heat Mass Transfer
38
(
8
),
1483
1494
(
1995
).
28.
Og̃uz
,
H.
, “
On the relaxation of laminar jets at high Reynolds numbers
,”
Phys. Fluids
10
,
361
367
(
1998
).
29.
Omodei
,
B. J.
, “
On die-swell of an axisymmetric Newtonian jet
,”
Comput. Fluids
8
(
3
),
275
289
(
1980
).
30.
Osher
,
S.
and
Fedkiw
,
R. P.
, “
Level set methods: An overview and some recent results
,”
J. Comput. Phys.
169
(
2
),
463
502
(
2001
).
31.
Philippe
,
C.
and
Dumargue
,
P.
, “
Étude de l’établissement d’un jet liquide laminaire émergeant d’une conduite cylindrique verticale semi-infinie et soumis à l’influence de la gravité
,”
Z. Angew. Math. Phys.
42
(
2
),
227
242
(
1991
).
32.
Reddy
,
K. R.
and
Tanner
,
R. I.
, “
Finite element solution of viscous jet flows with surface tension
,”
Comput. Fluids
6
(
2
),
83
91
(
1978
).
33.
Robinson
,
A. J.
and
Schnitzler
,
E.
, “
An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer
,”
Exp. Therm. Fluid Sci.
32
(
1
),
1
13
(
2007
).
34.
Rohlfs
,
W.
,
Ehrenpreis
,
C.
,
Haustein
,
H. D.
, and
Kneer
,
R.
, “
Influence of viscous flow relaxation time on self-similarity in free-surface jet impingement
,”
Int. J. Heat Mass Transfer
78
,
435
446
(
2014
).
35.
Scheuermann
,
R.
, “
Ueber die Gestalt und die Auflösung des fallenden Flüssigkeitsstrahles
,”
Ann. Phys.
365
,
233
259
(
1919
).
36.
Schlichting
,
H.
,
Boundary Layer Theory
, 6th ed. (
McGraw-Hill
,
New York
,
1979
).
37.
Sevilla
,
A.
, “
The effect of viscous relaxation on the spatiotemporal stability of capillary jets
,”
J. Fluid Mech.
684
,
204
226
(
2011
).
38.
Shah
,
R. K.
and
London
,
A. L.
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
(
Academic Press
,
1978
).
39.
Slattery
,
J. C.
and
Schowalter
,
W. R.
, “
Effect of surface tension in measurement of the average normal stress at the exit of a capillary tube through an analysis of the capillary jet
,”
J. Appl. Polym. Sci.
8
,
1941
1947
(
1964
).
40.
Tornberg
,
A. K.
and
Björn
,
E.
, “
A finite element based level-set method for multiphase flow applications
,”
Comput. Visualization Sci.
3
(
1-2
),
93
101
(
2000
).
41.
Vrentas
,
J. S.
,
Duda
,
J. L.
, and
Bargeron
,
K. G.
, “
Effect of axial diffusion of vorticity on flow development in circular conduits: Part I. Numerical solutions
,”
AIChE J.
12
(
5
),
837
844
(
1966
).
42.
Weisbach
,
J. L.
,
Die Experimental Hydraulik
(
Engelhardt
,
1855
).
43.
Wilson
,
D. E.
, “
A similarity solution for the axisymmetric viscous-gravity jet
,”
Phys. Fluids
29
,
632
(
1986
).
44.
Zimmels
,
Y.
, “
Use of interfacial energy density in a modified Bernoulli equation for characterization of spraying systems
,”
Langmuir
11
(
8
),
2985
2990
(
1995
).
You do not currently have access to this content.