For the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan, the chemistry modeling of polyatomic molecules is implemented in the direct simulation Monte Carlo method within the reactive plasma flow solver PICLas. An additional reaction condition as well as the consideration of the vibrational degrees of freedom is described in the context of the total collision energy model. The treatment of reverse exchange and recombination reactions is discussed, where the low temperature exponent of the Arrhenius fit for methane dissociation limited the calculation of the reaction probability at relevant temperatures. An alternative method based on the equilibrium constant is devised. The post-reaction energy redistribution is performed under the assumption of equipartition of the remaining collisional energy. The implementation is verified for several reaction paths with simple reservoir simulations. Finally, the feasibility of the new chemistry model is demonstrated by a simulation of a trajectory point of Huygens probe at Titan.

1.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
, 2nd ed. (
Oxford Engineering Science
,
1994
).
2.
C.-D.
Munz
,
M.
Auweter-Kurtz
,
S.
Fasoulas
,
A.
Mirza
,
P.
Ortwein
,
M.
Pfeiffer
, and
T.
Stindl
, “
Coupled particle-in-cell and direct simulation Monte Carlo method for simulating reactive plasma flows
,”
C. R. Mec.
342
,
662
670
(
2014
).
3.
P.
Nizenkov
,
P.
Noeding
,
M.
Konopka
, and
S.
Fasoulas
, “
Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications
,”
CEAS Space J.
9
,
127
137
(
2017
).
4.
M.
Pfeiffer
,
P.
Nizenkov
,
A.
Mirza
, and
S.
Fasoulas
, “
Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases
,”
Phys. Fluids
28
,
027103
(
2016
).
5.
B. L.
Haas
and
I. D.
Boyd
, “
Models for direct Monte Carlo simulation of coupled vibration-dissociation
,”
Phys. Fluids A
5
,
478
(
1993
).
6.
I. D.
Boyd
, “
A threshold line dissociation model for the direct simulation Monte Carlo method
,”
Phys. Fluids
8
,
1293
1300
(
1996
).
7.
I. D.
Boyd
,
D.
Bose
, and
G. V.
Candler
, “
Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations
,”
Phys. Fluids
9
,
1162
(
1997
).
8.
C. R.
Lilley
and
M. N.
Macrossan
, “
A macroscopic chemistry method for the direct simulation of gas flows
,”
Phys. Fluids
16
,
2054
2066
(
2004
); e-print arXiv:1011.1669v3.
9.
M. A.
Gallis
and
J. K.
Harvey
, “
Modelling of chemical reactions in hypersonic rarefied flow with the direct simulation Monte Carlo method
,”
J. Fluid Mech.
312
,
149
172
(
1996
).
10.
G. A.
Bird
, “
The Q-K model for gas-phase chemical reaction rates
,”
Phys. Fluids
23
,
106101
(
2011
).
11.
R.
Zakeri
,
R.
Kamali Moghadam
, and
M.
Mani
, “
New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow
,”
Phys. Fluids
29
,
047105
(
2017
).
12.
J. G.
Kim
and
I. D.
Boyd
, “
Monte Carlo simulation of nitrogen dissociation based on state-resolved cross sections
,”
Phys. Fluids
26
,
012006
(
2014
).
13.
E.
Torres
,
Y. A.
Bondar
, and
T. E.
Magin
, “
Uniform rovibrational collisional N2 bin model for DSMC, with application to atmospheric entry flows
,”
AIP Conf. Proc.
1786
,
050010
(
2016
).
14.
D. A.
Andrienko
and
I. D.
Boyd
, “
Master equation study of vibrational and rotational relaxations of oxygen
,”
J. Thermophys. Heat Transfer
30
,
533
552
(
2016
).
15.
M.
Kulakhmetov
,
M. A.
Gallis
, and
A.
Alexeenko
, “
Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O2 + O system
,”
J. Chem. Phys.
144
,
174302
(
2016
).
16.
C.
Park
,
J. T.
Howe
,
R. L.
Jaffe
, and
G. V.
Candler
, “
Review of chemical-kinetic problems of future NASA missions. II–Mars entries
,”
J. Thermophys. Heat Transfer
8
,
9
23
(
1994
).
17.
T.
Gokcen
, “
N2–CH4–Ar chemical kinetic model for simulations of atmospheric entry to Titan
,”
J. Thermophys. Heat Transfer
21
,
9
18
(
2007
).
18.
R.
Savajano
,
R.
Sobbia
,
M.
Gaffuri
, and
P.
Leyland
, “
Reduced chemical kinetic model for Titan entries
,”
Int. J. Chem. Eng.
2011
,
1
8
.
19.
P.
Reynier
, “
Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects
,”
Prog. Aerosp. Sci.
70
,
1
27
(
2014
).
20.
T. S.
Mogstad
, “
DSMC computation of radiative heat flux during Huygens entry into the Titan atmosphere
,” in
Shock Waves @ Marseille II
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1995
), pp.
347
354
.
21.
I. B.
Sebastião
and
A.
Alexeenko
, “
Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model
,”
Phys. Fluids
28
,
107103
(
2016
).
22.
M.
Laux
, “
Direkte simulation verdünnter, reagierender Strömungen
,” Ph.D. dissertation (
University of Stuttgart
,
1995
).
23.
S. F.
Gimelshein
,
N. E.
Gimelshein
,
D. A.
Levin
,
M. S.
Ivanov
, and
I. J.
Wysong
, “
On the use of chemical reaction rates with discrete internal energies in the direct simulation Monte Carlo method
,”
Phys. Fluids
16
,
2442
(
2004
).
24.
I. D.
Boyd
, “
Assessment of chemical nonequilibrium in rarefied hypersonic flow
,” in
28th Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
1990
).
25.
I. D.
Boyd
and
J. P. W.
Stark
, “
Direct simulation of chemical reactions
,”
J. Thermophys. Heat Transfer
4
,
391
393
(
1990
).
26.
T.
Ozawa
,
J.
Zhong
, and
D. A.
Levin
, “
Development of kinetic-based energy exchange models for noncontinuum, ionized hypersonic flows
,”
Phys. Fluids
20
,
046102
(
2008
).
27.
I. D.
Boyd
, “
Modeling backward chemical rate processes in the direct simulation Monte Carlo method
,”
Phys. Fluids
19
,
126103
(
2007
).
28.
C.
Borgnakke
and
P. S.
Larsen
, “
Statistical collision model for Monte Carlo simulation of polyatomic gas mixture
,”
J. Comput. Phys.
18
,
405
420
(
1975
).
29.
F.
Bergemann
and
I. D.
Boyd
, “
New discrete vibrational energy model for the direct simulation Monte Carlo method
,” in
Rarefied Gas Dynamics: Experimental Techniques and Physical Systems
, edited by
B. D.
Shizgal
and
D. P.
Weaver
(
American Institute of Aeronautics and Astronautics
,
Washington, DC
,
1994
), pp.
174
183
.
30.
G. A.
Bird
,
The DSMC Method
(
CreateSpace Independent Publishing Platform
,
2013
).
31.
D. S.
Liechty
and
M.
Lewis
, “
Electronic energy level transition and ionization following the quantum-kinetic chemistry model
,”
J. Spacecr. Rockets
48
,
283
290
(
2011
).
32.
D. L.
Baulch
, “
Evaluated kinetic data for combustion modeling: Supplement II
,”
J. Phys. Chem. Ref. Data
34
,
757
(
2005
).
33.
J.
Troe
and
V. G.
Ushakov
, “
The dissociation/recombination reaction CH4 (+M) CH3 + H (+M): A case study for unimolecular rate theory
,”
J. Chem. Phys.
136
,
214309
(
2012
).
34.
S. I.
Sandler
,
An Introduction to Applied Statistical Thermodynamics
, 1st ed. (
John Wiley & Sons
,
2010
).
35.
M. J.
Wright
,
B. R.
Hollis
,
D.
Bose
, and
L.
Walpot
, “
Post-flight aerothermal analysis of Huygens probe
,” in
3rd International Planetary Probe Workshop
(
ESA
,
Anavyssos, Attiki, Greece
,
2006
), Vol. SP-607.
36.
M.
Pfeiffer
,
A.
Mirza
, and
S.
Fasoulas
, “
A grid-independent particle pairing strategy for DSMC
,”
J. Comput. Phys.
246
,
28
36
(
2013
).
You do not currently have access to this content.