We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (Ra<104). Flow visualizations show a steady cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.

1.
E.
Bodenschatz
,
W.
Pesch
, and
G.
Ahlers
, “
Recent developments in Rayleigh-Bénard convection
,”
Annu. Rev. Fluid Mech.
32
,
709
(
2000
).
2.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Dover
,
New York
,
1981
).
3.
E. L.
Koschmieder
,
Bénard Cells and Taylor Vortices
(
Cambridge University Press
,
1993
).
4.
M. C.
Remillieux
,
H.
Zhao
, and
H. H.
Bau
, “
Suppression of Rayleigh-Bénard convection with proportional-derivative controller
,”
Phys. Fluids
19
,
017102
(
2007
).
5.
L. E.
Howle
, “
Active control of Rayleigh–Bénard convection
,”
Phys. Fluids
9
,
1861
(
1997
).
6.
L.
Bellon
,
M.
Gibert
, and
R. H.
Hernández
, “
Coupling between aging and convective motion in a colloidal glass of Laponite
,”
Eur. Phys. J. B
55
,
101
(
2007
).
7.
L. E.
Howle
, “
Control of Rayleigh-Bénard convection in a small aspect ratio container
,”
Int. J. Heat Mass Transfer
40
,
817
(
1997
).
8.
X.
Chavanne
,
B.
Castaing
,
B.
Chabaud
,
F.
Chillá
, and
B.
Hébral
, “
Rayleigh–Bénard convection at very high Rayleigh numbers close to the 4He critical point
,”
Cryogenics
38
,
1191
(
1998
).
9.
J.
Singer
and
H. H.
Bau
, “
Active control of convection
,”
Phys. Fluids A
3
,
2859
(
1991
).
10.
G.
Ahlers
,
E.
Brown
,
F. F.
Araujo
,
D.
Funfschilling
,
S.
Grossmann
, and
D.
Lohse
, “
Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
569
,
409
(
2006
).
11.
Y.-M.
Chen
and
A. J.
Pearlstein
, “
Stability of free-convection flows of variable-viscosity fluids in vertical and inclined slots
,”
J. Fluid Mech.
198
,
513
(
1989
).
12.
J. B.
Segur
and
H. E.
Oberstar
, “
Viscosity of glycerol and its aqueous solutions
,”
Ind. Eng. Chem.
43
,
2117
(
1951
).
13.
Y. L.
Rastorguev
and
Y. A.
Ganiev
, “
Thermal conductivity of aqueous solutions of organic materials
,”
Russ. J. Phys. Chem.
40
,
869
(
1966
).
14.
C. W.
Meyer
,
G.
Ahlers
, and
D. S.
Cannell
, “
Stochastic influences on pattern formation in Rayleigh-Bénard convection: Ramping experiments
,”
Phys. Rev. A
44
,
2514
(
1991
).
15.
R.
Verzicco
, “
Effects of nonperfect thermal sources in turbulent thermal convection
,”
Phys. Fluids
16
,
1965
(
2004
).
16.
K.
Ogata
,
Modern Control Engineering
(
Prentice Hall
,
2010
).
17.
J. G.
Ziegler
and
N. B.
Nichols
, “
Optimum settings for automatic controllers
,”
Trans. ASME
64
,
759
(
1942
).
18.
H. S.
Carslaw
and
J. C.
Jaeger
,
Conduction of Heat in Solids
(
Oxford University Press
,
1959
).
19.
K.
Stork
and
U.
Müller
, “
Convection in boxes: Experiments
,”
J. Fluid Mech.
54
,
599
(
1972
).
20.
Y.
Fukazawa
and
M.
Funakoshi
, “
Onset of thermal convection and its flow patterns in a rectangular cavity
,”
Fluid Dyn. Res.
47
,
065505
(
2015
).
21.
K. R.
Kirchartz
and
H.
Oertel
, Jr.
, “
Three-dimensional thermal cellular convection in rectangular boxes
,”
J. Fluid Mech.
192
,
249
(
1988
).
22.
E. L.
Koschmieder
and
S. G.
Pallas
, “
Heat transfer through a shallow, horizontal convecting fluid layer
,”
Int. J. Heat Mass Transfer
17
,
991
(
1974
).
23.
A.
Schlüter
,
D.
Lortz
, and
F.
Busse
, “
On the stability of steady finite amplitude convection
,”
J. Fluid Mech.
23
,
129
(
1965
).
24.
S. H.
Davis
, “
Convection in a box: Linear theory
,”
J. Fluid Mech.
30
,
465
(
1967
).
25.
I.
Catton
, “
Convection in a closed rectangular region: The onset of motion
,”
J. Heat Transfer
92
,
186
(
1970
).
26.
R. W.
Walden
,
P.
Kolodner
,
A.
Passner
, and
C.
Surko
, “
Heat transport by parallel-roll convection in a rectangular container
,”
J. Fluid Mech.
185
,
205
(
1987
).
You do not currently have access to this content.