Spray cooling is one of the most promising methods of cooling high heat flux electronics. Depending on the type of the nozzle, spray cooling can be categorized as single-phase or two-phase. In the latter, which is known to be more effective, a secondary gas is used to further pressurize the liquid and form smaller droplets at higher velocities. The gas is also assumed to assist the spreading phase by imposing normal and tangential forces on the droplet free surface which adds to the complicated hydrodynamics of the droplet impact. Moreover, the order of magnitude of droplet size in spray cooling is 10−6 m, thereby introducing a low Weber and Reynolds numbers’ impact regime which heretofore has not been well understood. A 3D lattice Boltzmann method was implemented to simulate the impact of a single micro-droplet on a dry surface both in ambient air and under a stagnation gas flow. Two cases were closely compared and correlations were proposed for the instantaneous spreading diameter. Contrary to recent findings at higher impact Weber and Reynolds numbers, it was found that a stagnation flow only significantly affects the spreading phase for Ca*0.35 but has little influence on the receding physics.

1.
J.
Kim
, “
Spray cooling heat transfer: The state of the art
,”
Int. J. Heat Fluid Flow
28
,
753
(
2007
).
2.
L. C.
Chow
,
M. S.
Sehmbey
, and
M. R.
Pais
, “
High heat flux spray cooling
,”
Annu. Rev. Heat Transfer
8
,
291
(
1997
).
3.
M.
Ebrahim
and
A.
Ortega
, “
Identification of the impact regimes of a liquid droplet propelled by a gas stream impinging onto a dry surface at moderate to high Weber number
,”
Exp. Therm. Fluid Sci.
80
,
168
(
2017
).
4.
A. J.
Diaz
and
A.
Ortega
, “
Gas-assisted droplet impact on a solid surface
,”
J. Fluids Eng.
138
,
081104
(
2016
).
5.
C.
Stow
and
M.
Hadfield
, “
An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface
,”
Proc. R. Soc. A
373
,
419
(
1981
).
6.
C.
Mundo
,
M.
Sommerfeld
, and
C.
Tropea
, “
Droplet-wall collisions: Experimental studies of the deformation and breakup process
,”
Int. J. Multiphase Flow
21
,
151
(
1995
).
7.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Time evolution of liquid drop impact onto solid, dry surfaces
,”
Exp. Fluids
33
,
112
(
2002
).
8.
S.
Sikalo
,
M.
Marengo
,
C.
Tropea
, and
E.
Ganic
, “
Analysis of impact of droplets on horizontal surfaces
,”
Exp. Therm. Fluid Sci.
25
,
503
(
2002
).
9.
S.
Sikalo
and
E.
Ganic
, “
Phenomena of droplet–surface interactions
,”
Exp. Therm. Fluid Sci.
31
,
97
(
2006
).
10.
L.
Xu
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Drop splashing on a dry smooth surface
,”
Phys. Rev. Lett.
94
,
184505
(
2005
).
11.
J. H.
Moon
,
J. B.
Lee
, and
S. H.
Lee
, “
Dynamic behavior of non-Newtonian droplets impinging on solid surfaces
,”
Mater. Trans.
54
,
260
(
2013
).
12.
R.
Rioboo
,
C.
Tropea
, and
M.
Marengo
, “
Outcomes from a drop impact on solid surfaces
,”
Atomization Sprays
11
,
155
(
2001
).
13.
A.
Yarin
, “
DROP IMPACT DYNAMICS: Splashing, spreading, receding, bouncing
,”
Annu. Rev. Fluid Mech.
38
,
159
(
2006
).
14.
R.-H.
Chen
,
L. C.
Chow
, and
J. E.
Navedo
, “
Effects of spray characteristics on critical heat flux in subcooled water spray cooling
,”
Int. J. Heat Mass Transfer
45
,
4033
(
2002
).
15.
W.
Jia
and
H.-H.
Qiu
, “
Experimental investigation of droplet dynamics and heat transfer in spray cooling
,”
Exp. Therm. Fluid Sci.
27
,
829
(
2003
).
16.
Y.
Son
,
C.
Kim
,
D. H.
Yang
, and
D. J.
Ahn
, “
Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers
,”
Langmuir
24
,
2900
(
2008
).
17.
A. J.
Diaz
and
A.
Ortega
, “
Investigation of a gas-propelled liquid droplet impinging onto a heated surface
,”
Int. J. Heat Mass Transfer
67
,
1181
(
2013
).
18.
A. M.
Briones
,
J. S.
Ervin
,
S. A.
Putnam
,
L. W.
Byrd
, and
L.
Gschwender
, “
Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface
,”
Langmuir
26
,
13272
(
2010
).
19.
X.
He
and
L.-S.
Luo
, “
Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation
,”
Phys. Rev. E
56
,
6811
(
1997
).
20.
A. K.
Gunstensen
,
D. H.
Rothman
,
S.
Zaleski
, and
G.
Zanetti
, “
Lattice Boltzmann model of immiscible fluids
,”
Phys. Rev. A
43
,
4320
(
1991
).
21.
M. R.
Swift
,
W.
Osborn
, and
J.
Yeomans
, “
Lattice Boltzmann simulation of nonideal fluids
,”
Phys. Rev. Lett.
75
,
830
(
1995
).
22.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
,
1815
(
1993
).
23.
X.
He
,
S.
Chen
, and
R.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
,”
J. Comput. Phys.
152
,
642
(
1999
).
24.
L.
Chen
,
Q.
Kang
,
Y.
Mu
,
Y.-L.
He
, and
W.-Q.
Tao
, “
A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications
,”
Int. J. Heat Mass Transfer
76
,
210
(
2014
).
25.
X.
He
,
X.
Shan
, and
G. D.
Doolen
, “
Discrete Boltzmann equation model for nonideal gases
,”
Phys. Rev. E
57
,
R13
(
1998
).
26.
N. F.
Carnahan
and
K. E.
Starling
, “
Equation of state for nonattracting rigid spheres
,”
J. Chem. Phys.
51
,
635
(
1969
).
27.
A. R.
Davies
,
J. L.
Summers
, and
M. C. T.
Wilson
, “
On a dynamic wetting model for the finite-density multiphase lattice Boltzmann method
,”
Int. J. Comput. Fluid Dyn.
20
,
415
(
2006
).
28.
D.
Iwahara
,
H.
Shinto
,
M.
Miyahara
, and
K.
Higashitani
, “
Liquid drops on homogeneous and chemically heterogeneous surfaces: A two-dimensional lattice Boltzmann study
,”
Langmuir
19
,
9086
(
2003
).
29.
S.
Chandra
and
C.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. A
432
,
13
(
1991
).
30.
M.
Pasandideh Fard
,
Y.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
(
1996
).
31.
W.-J.
Yang
, Report No. 535,
Tokyo, University, Institute of Space and Aeronautical Science
,
1975
, Vol. 40, p.
423
.
32.
H.
Jones
, “
Cooling, freezing and substrate impact of droplets formed by rotary atomization
,”
J. Phys. D: Appl. Phys.
4
,
1657
(
1971
).
33.
J.
Madejski
, “
Solidification of droplets on a cold surface
,”
Int. J. Heat Mass Transfer
19
,
1009
(
1976
).
34.
P.
Attane
,
F.
Girard
, and
V.
Morin
, “
An energy balance approach of the dynamics of drop impact on a solid surface
,”
Phys. Fluids
19
,
012101
(
2007
).
35.
S.
Bechtel
,
D.
Bogy
, and
F.
Talke
, “
Impact of a liquid drop against a flat surface
,”
IBM J. Res. Dev.
25
,
963
(
1981
).
36.
H.-Y.
Kim
and
J.-H.
Chun
, “
The recoiling of liquid droplets upon collision with solid surfaces
,”
Phys. Fluids
13
,
643
(
2001
).
37.
B. L.
Scheller
and
D. W.
Bousfield
, “
Newtonian drop impact with a solid surface
,”
AIChE J.
41
,
1357
(
1995
).
38.
J.
Drelich
,
E.
Chibowski
,
D. D.
Meng
, and
K.
Terpilowski
, “
Hydrophilic and superhydrophilic surfaces and materials
,”
Soft Matter
7
,
9804
(
2011
).
39.
J.
Bico
,
U.
Thiele
, and
D.
Qur
, “
Wetting of textured surfaces
,”
Colloids Surf., A
206
,
41
(
2002
).
40.
D.
Nuyttens
,
K.
Baetens
,
M.
De Schampheleire
, and
B.
Sonck
, “
Effect of nozzle type, size and pressure on spray droplet characteristics
,”
Biosyst. Eng.
97
,
333
(
2007
).
41.
J.
Yang
,
L.
Chow
, and
M.
Pais
, “
Nucleate boiling heat transfer in spray cooling
,”
J. Heat Transfer
118
,
668
(
1996
).
42.
C.
Chang
,
C.-H.
Liu
, and
C.-A.
Lin
, “
Boundary conditions for lattice Boltzmann simulations with complex geometry flows
,”
Comput. Math. Appl.
58
,
940
(
2009
).
43.
C.-H.
Liu
,
K.-H.
Lin
,
H.-C.
Mai
, and
C.-A.
Lin
, “
Thermal boundary conditions for thermal lattice Boltzmann simulations
,”
Comput. Math. Appl.
59
,
2178
(
2010
).
44.
A.
Gupta
,
T.
Damm
,
C.
Cook
,
S.
Charagundla
, and
C.
Presser
, in
35th Aerospace Science Meeting
(
American Institute of Aeronautics and Astronautics
,
Reno, NV
,
1997
), Paper No.
97
0268
.
You do not currently have access to this content.