We propose a passive technique for a drop to climb along the staircase textured surface using chemical wettability gradients. The stair structure, droplet configuration, and contact angle gradient are modeled using Lagrangian smoothed particle hydrodynamics. The stair climb efficiency of the droplet is found to be a function of wettability gradient strength. Using analytical balance of actuation and resistive forces across droplets, physical reasons behind stair climbing are established and influencing parameters are identified. Evolution of the droplet shape along with the advancing and the receding contact angles is presented from where instantaneous actuation and hysteresis forces are calculated. Using history of Lagrangian particles, circulation at the foot of stairs and progressing development of the advancing drop front are monitored. Higher efficiency in stair climbing in the case of a bigger sized drop than smaller one is obtained from simulation results and realized from force balance. Difficulty in climbing steeper stairs is also demonstrated to delineate the effect of gravitational pull against the actuation force due to the wettability gradient.

1.
H. P.
Greenspan
, “
On the motion of a small viscous droplet that wets a surface
,”
J. Fluid Mech.
84
,
125
(
1978
).
2.
F.
Brochard
, “
Motions of droplets on solid surfaces induced by chemical or thermal gradients
,”
Langmuir
5
,
432
(
1989
).
3.
M. K.
Chaudhury
and
G. M.
Whitesides
, “
How to make water run uphill
,”
Science
256
,
1539
(
1992
).
4.
F.
Gallaire
,
P.
Meliga
,
P.
Laure
, and
C. N.
Baroud
, “
Marangoni induced force on a drop in a Hele Shaw cell
,”
Phys. Fluids
26
(
6
),
062105
(
2014
).
5.
L. M.
Pismen
and
U.
Thiele
, “
Asymptotic theory for a moving droplet driven by a wettability gradient
,”
Phys. Fluids
18
(
4
),
042104
(
2006
).
6.
V.
Bahadur
and
S. V.
Garimella
, “
An energy-based model for electrowetting-induced droplet actuation
,”
J. Micromech. Microeng.
16
,
1494
(
2006
).
7.
S.
Datta
,
M.
Sharma
, and
A. K.
Das
, “
Investigation of upward climbing motion of a droplet over an inclined surface using electrowetting
,”
Ind. Eng. Chem. Res.
53
,
6685
(
2014
).
8.
S.
Datta
,
A. K.
Das
, and
P. K.
Das
, “
Unravelling electrostatic actuation on inclined and humped surfaces: Effect of substrate contact angle
,”
Ind. Eng. Chem. Res.
55
,
3949
(
2016
).
9.
N.
Moumen
,
R. S.
Subramanian
, and
J. B.
McLaughlin
, “
Experiments on the motion of drops on a horizontal solid surface due to a wettability gradient
,”
Langmuir
22
,
2682
(
2006
).
10.
S.
Daniel
,
M. K.
Chaudhury
, and
J. C.
Chen
, “
Fast drop movements resulting from the phase change on a gradient surface
,”
Science
291
,
633
(
2001
).
11.
S.
Daniel
and
M. K.
Chaudhury
, “
Rectified motion of liquid drops on gradient surfaces induced by vibration
,”
Langmuir
18
,
3404
(
2002
).
12.
R. S.
Subramanian
,
N.
Moumen
, and
J. B.
McLaughlin
, “
Motion of a drop on a solid surface due to a wettability gradient
,”
Langmuir
21
,
11844
(
2005
).
13.
A.
Shastry
,
M. J.
Case
, and
K. F.
Bohringer
, “
Directing droplets using microstructured surfaces
,”
Langmuir
22
,
6161
(
2006
).
14.
G.
Fang
,
W.
Li
,
X.
Wang
, and
G.
Qiao
, “
Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability
,”
Langmuir
24
,
11651
(
2008
).
15.
C.
Sun
,
X. W.
Zhao
,
Y. H.
Han
, and
Z. Z.
Gu
, “
Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment
,”
Thin Solid Films
516
,
4059
(
2008
).
16.
H. S.
Ahn
,
H. J.
Jo
,
S. H.
Kang
, and
M. H.
Kim
, “
Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling
,”
Appl. Phys. Lett.
98
,
071908
(
2011
).
17.
C.
Dorror
and
J.
Ruhe
, “
Advancing and receding motion of droplets on ultrahydrophobic post surfaces
,”
Langmuir
22
,
7652
(
2006
).
18.
H. S.
Khoo
and
F. G.
Tseng
, “
Spontaneous high-speed transport of sub nanoliter water droplet on gradient nano textured surfaces
,”
Appl. Phys. Lett.
95
,
063108
(
2009
).
19.
D.
Orejon
,
O.
Shardt
,
P. R.
Waghmare
,
N. S. K.
Gunda
,
Y.
Takata
, and
S. K.
Mitra
, “
Droplet migration during condensation on chemically patterned micropillars
,”
RSC Adv.
6
,
36698
(
2016
).
20.
G. C.
Ganzenmuller
,
M. O.
Steinhauser
, and
P. V.
Liedekerke
, “
The implementation of smoothed particle hydrodynamics in LAMMPS
,”
2011
, retrieved from http://lammps.sandia.gov/doc/PDF/SPH_LAMMPS_userguide.pdf.
21.
Y.
Cao
and
Y. C.
Shin
, “
Multi-scale modeling of phase explosion in high fluence nanosecond laser ablation and clarification of ablation depth prediction criterion
,”
Appl. Surf. Sci.
357
,
74
(
2015
).
22.
A.
Alexiadis
,
K.
Stamatopoulos
,
W.
Wen
,
H. K.
Batchelor
,
S.
Bakalos
,
M.
Barigou
, and
M. J. H.
Simmons
, “
Using discrete multi-physics for detailed exploration of hydrodynamics inan in vitro colon system
,”
Comput. Biol. Med.
81
,
188
(
2017
).
23.
J. P.
Morris
,
P. J.
Fox
, and
Y.
Zhu
, “
Modeling low Reynolds number incompressible flows using SPH
,”
J. Comput. Phys.
136
,
214
(
1997
).
24.
J. J.
Monaghan
, “
Simulating free surface flows with SPH
,”
J. Comput. Phys.
110
,
399
(
1994
).
25.
M.
Ellero
and
N. A.
Adams
, “
SPH simulations of flow around a periodic array of cylinders confined in a channel
,”
Int. J. Numer. Methods Eng.
86
,
1027
(
2011
).
26.
X.
Bian
,
S.
Litvinov
,
R.
Qian
,
M.
Ellero
, and
N. A.
Adams
, “
Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics
,”
Phys. Fluids
24
,
012002
(
2012
).
27.
A. K.
Das
and
P. K.
Das
, “
Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics
,”
Langmuir
25
(
19
),
11459
(
2009
).
28.
X. Y.
Hu
and
N. A.
Adams
, “
A multi-phase SPH method for macroscopic and mesoscopic flows
,”
J. Comput. Phys.
213
,
844
(
2006
).
29.
X. Y.
Hu
and
N. A.
Adams
, “
An incompressible multi-phase SPH method
,”
J. Comput. Phys.
227
,
264
(
2007
).
30.
A. K.
Das
and
P. K.
Das
, “
Multimode dynamics of a liquid drop over an inclined surface with a wettability gradient
,”
Langmuir
26
(
12
),
9547
(
2010
).
31.
A. K.
Das
and
P. K.
Das
, “
Schemes for the fragmentation and merging of droplets resting on a solid substrate using a patterned wettability gradient
,”
Langmuir
26
(
20
),
15883
(
2010
).
32.
R. D.
Groot
and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
,
4423
(
1997
).
33.
J. U.
Brackbill
,
D. B.
Kothe
, and
C. A.
Zemach
, “
Continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
34.
T.
Young
, “
An essay on the cohesion of fluids
,”
Philos. Trans. R. Soc. London
95
,
65
(
1805
).
35.
R. G.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
(
1986
).
36.
A. A.
Saha
and
S. K.
Mitra
, “
Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow
,”
J. Colloid Interface Sci.
339
,
461
(
2009
).
37.
R. L.
Hoffman
, “
A study of the advancing interface. I. Interface shape in liquid-gas systems
,”
J. Colloid Interface Sci.
50
,
228
(
1975
).
38.
A.
Ahmadi
,
H.
Najjaran
,
J. F.
Holzman
, and
M.
Hoorfar
, “
Two-dimensional flow dynamics in digital microfluidic systems
,”
J. Micromech. Microeng.
19
,
065003
(
2009
).
You do not currently have access to this content.