The characteristics of divergence-free grid turbulence interacting with a weak spherical shock wave with a Mach number of 1.05 are experimentally investigated. Turbulence-generating grids are used to generate nearly isotropic, divergence-free turbulence. The turbulent Reynolds number based on the Taylor microscale Reλ and the turbulent Mach number Mt are 49Reλ159 and 0.709 ×103Mt2.803×103, respectively. A spherical shock wave is generated by a diaphragmless shock tube. The instantaneous streamwise velocity before and after the interaction is measured by a hot wire probe. The results show that the root-mean-square value of streamwise velocity fluctuations (r.m.s velocity) increases and the streamwise integral length scale decreases after the interaction. The changes in the r.m.s velocity become small with the increase in Reλ and Mt for the same strength of the shock wave. This tendency is similar to that of the streamwise integral length scale. The continuous wavelet analysis shows that high intensity appears mainly in the low-frequency region and positive and negative wavelet coefficients appear periodically in time before the interaction, whereas such high intensity appears in both the low- and high-frequency regions after the interaction. The spectral analysis reveals that the energy at high wavenumbers increases after the interaction. The change in turbulence after the interaction is explained from the viewpoint of the initial turbulent Mach number. It is suggested that the change is more significant for initial divergence-free turbulence than for curl-free turbulence.

1.
J.
Keller
and
W.
Merzkirch
, “
Interaction of a normal shock wave with a compressible turbulent flow
,”
Exp. Fluids
8
,
241
248
(
1990
).
2.
A.
Honkan
and
J.
Andreopoulos
, “
Rapid compression of grid-generated turbulence by a moving shock wave
,”
Phys. Fluids
4
,
2562
2572
(
1992
).
3.
G.
Briassulis
,
J. H.
Agui
,
J.
Andreopoulos
, and
C. B.
Watkins
, “
A shock tube research facility for high-resolution measurements of compressible turbulence
,”
Exp. Therm. Fluid Sci.
13
,
430
446
(
1996
).
4.
J. H.
Agui
,
G.
Briassulis
, and
Y.
Andreopoulos
, “
Studies of interactions of a propagating shock wave with decaying grid turbulence: Velocity and vorticity fields
,”
J. Fluid Mech.
524
,
143
195
(
2005
).
5.
S.
Barre
,
D.
Alem
, and
J. P.
Bonnet
, “
Experimental study of a normal shock/homogeneous turbulence interaction
,”
AIAA J.
34
,
968
974
(
1996
).
6.
L.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Direct numerical simulation of isotropic turbulence interacting with a weak shock wave
,”
J. Fluid Mech.
251
,
533
562
(
1993
).
7.
R.
Hannappel
and
R.
Friedrich
, “
Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence
,”
Appl. Sci. Res.
54
,
205
221
(
1995
).
8.
L.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Interaction of isotropic turbulence with shock waves: Effect of shock strength
,”
J. Fluid Mech.
340
,
225
247
(
1997
).
9.
G.
Briassulis
,
J. H.
Agui
, and
Y.
Andreopoulos
, “
The structure of weakly compressible grid–generated turbulence
,”
J. Fluid Mech.
432
,
219
283
(
2001
).
10.
J.
Wang
,
Y.
Shi
,
L.-P.
Wang
,
Z.
Xiao
,
X. T.
He
, and
S.
Chen
, “
Effect of compressibility on the small–scale structures in isotropic turbulence
,”
J. Fluid Mech.
713
,
588
631
(
2012
).
11.
A.
Yoshizawa
, “
Turbulence modeling and compressibility
,”
J. Jpn. Soc. Aeronaut. Space Sci.
41
,
116
123
(
1993
).
12.
A.
Sasoh
,
T.
Harasaki
,
T.
Kitamura
,
D.
Takagi
,
S.
Ito
,
A.
Matsuda
,
K.
Nagata
, and
Y.
Sakai
, “
Statistical behavior of post–shock overpressure past grid turbulence
,”
Shock Waves
24
,
489
500
(
2014
).
13.
T.
Kitamura
,
K.
Nagata
,
Y.
Sakai
,
A.
Sasoh
,
O.
Terashima
,
H.
Saito
, and
T.
Harasaki
, “
On invariants in grid turbulence at moderate Reynolds numbers
,”
J. Fluid Mech.
738
,
378
406
(
2014
).
14.
K.
Nagata
,
J. C. R.
Hunt
,
Y.
Sakai
, and
H.
Wong
, “
Distorted turbulence and secondary flow near right–angled plates
,”
J. Fluid Mech.
668
,
446
479
(
2011
).
15.
S. M.
Liang
,
J. L.
Hsu
, and
J. S.
Wang
, “
Numerical study of cylindrical blast wave propagation and reflection
,”
AIAA J.
39
,
1152
1158
(
2001
).
16.
J.
Larsson
,
I.
Bermejo–Moreno
, and
S. K.
Lele
, “
Reynolds– and Mach–number effects in canonical shock–turbulence interaction
,”
J. Fluid Mech.
717
,
293
321
(
2013
).
17.
J.
Ryu
and
D.
Livescu
, “
Turbulence structure behind the shock in canonical shock-vortical turbulence interaction
,”
J. Fluid Mech.
756
,
R1
(
2014
).
18.
D.
Livescu
and
J.
Ryu
, “
Vorticity dynamics after the shock-turbulence interaction
,”
Shock Waves
26
,
241
251
(
2016
).
19.
D. A.
Donzis
, “
Shock structure in shock-turbulence interactions
,”
Phys. Fluids
24
,
126101
(
2012
).
20.
Y.
Kaneda
,
T.
Ishihara
,
M.
Yokokawa
,
K.
Itakura
, and
A.
Uno
, “
Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box
,”
Phys. Fluids
15
,
L21
L24
(
2003
).
21.
L.
Jacquin
,
C.
Cambon
, and
E.
Blin
, “
Turbulence amplification by a shock wave and rapid distortion theory
,”
Phys. Fluids
5
,
2539
2550
(
1993
).
22.
T.
Kitamura
,
K.
Nagata
,
Y.
Sakai
,
A.
Sasoh
, and
Y.
Ito
, “
Rapid distortion theory analysis on the interaction between homogeneous turbulence and a planar shock wave
,”
J. Fluid Mech.
802
,
108
146
(
2016
).
23.
N. E.
Grube
,
E. M.
Taylor
, and
M. P.
Martin
, “
Numerical investigation of shock wave/isotropic turbulence interaction
,” in
49th AIAA Aerospace Sciences Meeting
,
2011
.
24.
S.
Xanthos
,
M.
Gong
, and
Y.
Andreopoulos
, “
Velocity and vorticity in weakly compressible isotropic turbulence under longitudinal expansive straining
,”
J. Fluid Mech.
584
,
301
335
(
2007
).
You do not currently have access to this content.