Flat-plate turbulent boundary layer adjustment to large-scale 2D and 3D wavy topographies was experimentally studied using high-resolution particle image velocimetry in a refractive-index-matching flume. The flow was characterized at a Reynolds number Re=4×104, based on the channel half height and incoming free-stream velocity. Two ratios of amplitude (a) to incoming boundary layer thickness (δ0) were considered for each topography (aδ0=0.12 and 0.81). The 2D topography is described by a sinusoidal wave in the streamwise direction with an amplitude to wavelength ratio aλx=0.05, while the 3D topography is defined with an additional wave superimposed in the spanwise direction. The results show that the spanwise variability of the topography leads to a much milder response in both aδ0 ratios. The regions of strong acceleration and deceleration over the crests and troughs of the topography are reduced over the 3D topography due to the alternate flow path around the 3D elements. Furthermore, the boundary layer thickness and integral parameters experienced milder variations over the 3D topography for both aδ0. The Reynolds shear stress shows distinctive evolution with downstream distance. In the 3D case, maximum Reynolds stress similar to those in the developed region is achieved within the first three wavelengths past the topographic change indicating that the dynamics of the downstream evolution is dominated by vertical diffusion and redistribution. This is in contrast with the 2D case with aδ0=0.12 where the Reynolds stress did not achieve the levels observed in the developed region.

1.
J.
Wieringa
, “
An objective exposure correction method for average wind speeds measured at a shelter location
,”
Q. J. R. Meteorol. Soc.
102
,
241
253
(
1976
).
2.
P. J.
Mason
, “
The formation of areally-averaged roughness lengths
,”
Q. J. R. Meteorol. Soc.
114
,
399
420
(
1988
).
3.
L.
Mahrt
, “
Surface heterogeneity and vertical structure of the boundary layer
,”
Boundary-Layer Meteorol.
96
,
33
62
(
2000
).
4.
J.
Jimenez
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
5.
W. P.
Elliott
, “
The growth of the atmospheric internal boundary layer
,”
Trans., Am. Geophys. Union
39
,
1048
1054
(
1958
).
6.
H. A.
Panofsky
and
A. A.
Townsend
, “
Change of terrain roughness and the wind profile
,”
Q. J. R. Meteorol. Soc.
90
,
147
155
(
1964
).
7.
R.
Antonia
and
R.
Luxton
, “
Energy balance in a turbulent boundary layer on a rough wall
,”
Phys. Fluids
14
,
1027
1029
(
1971
).
8.
R.
Antonia
and
R.
Luxton
, “
The response of a turbulent boundary layer to a step change in surface roughness Part 1. Smooth to rough
,”
J. Fluid Mech.
48
,
721
761
(
1971
).
9.
N. O.
Jensen
, “
Change of surface roughness and the planetary boundary layer
,”
Q. J. R. Meteorol. Soc.
104
,
351
356
(
1978
).
10.
D. H.
Wood
, “
Internal boundary layer growth following a step change in surface roughness
,”
Boundary-Layer Meteorol.
22
,
241
244
(
1982
).
11.
L. P.
Chamorro
and
F.
Porté-Agel
, “
Velocity and surface shear stress distributions behind a rough-to-smooth surface transition: A simple new model
,”
Boundary-Layer Meteorol.
130
,
29
41
(
2009
).
12.
J.
Kaimal
and
J.
Finnigan
,
Atmospheric Boundary Layer Flows: Their Structure and Measurement
(
Oxford University Press
,
Oxford, UK
,
1994
).
13.
S.
Savelyev
and
P.
Taylor
, “
Internal boundary layers: I. Height formulae for neutral and diabatic flows
,”
Boundary-Layer Meteorol.
115
,
1
25
(
2005
).
14.
S. E.
Belcher
and
J. C. R.
Hunt
, “
Turbulent flow over hills and waves
,”
Annu. Rev. Fluid Mech.
30
,
507
538
(
1998
).
15.
P. J.
Mason
and
R. I.
Sykes
, “
Flow over an isolated hill of moderate slope
,”
Q. J. R. Meteorol. Soc.
105
,
383
395
(
1979
).
16.
J. C. R.
Hunt
, “
Length scales in stably stratified turbulent flows and their use in turbulence models
,”
Stably Stratified Flow and Dense Gas Dispersion
, pp.
285
321
(
1988
).
17.
D. R.
Webster
,
D. B.
Degraaff
, and
J. K.
Eaton
, “
Turbulence characteristics of a boundary layer over a two-dimensional bump
,”
J. Fluid Mech.
320
,
53
69
(
1996
).
18.
V.
Baskaran
,
A.
Smits
, and
P.
Joubert
, “
A turbulent flow over a curved hill Part 1. Growth of an internal boundary layer
,”
J. Fluid Mech.
182
,
47
83
(
1987
).
19.
V.
Baskaran
,
A.
Smits
, and
P.
Joubert
, “
A turbulent flow over a curved hill. Part 2. Effects of streamline curvature and streamwise pressure gradient
,”
J. Fluid Mech.
232
,
377
402
(
1991
).
20.
Sutardi
and
C.
Ching
, “
Effect of different sized transverse square grooves on a turbulent boundary layer
,”
Exp. Fluids
34
,
261
274
(
2003
).
21.
C. Y.
Ching
, “
The response of a turbulent boundary layer to different shaped transverse grooves
,”
Exp. Fluids
35
,
325
337
(
2003
).
22.
K.
Chang
and
G.
Constantinescu
, “
Coherent structures in developing flow over two-dimensional dunes
,”
Water Resour. Res.
49
,
2466
2460
, (
2013
).
23.
A. M.
Hamed
,
M.
Sadowski
,
Z.
Zhang
, and
L. P.
Chamorro
, “
Transition to turbulence over 2D and 3D periodic large-scale roughnesses
,”
J. Fluid Mech.
804
,
R6
(
2016
).
24.
A. M.
Hamed
,
A.
Kamdar
,
L.
Castillo
, and
L. P.
Chamorro
, “
Turbulent boundary layer over 2D and 3D large-scale wavy walls
,”
Phys. Fluids
27
,
106601
(
2015
).
25.
D. P.
Zilker
and
T. J.
Hanratty
, “
Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2. Separated flows
,”
J. Fluid Mech.
90
,
257
271
(
1979
).
26.
J.
Buckles
,
T. J.
Hanratty
, and
R. J.
Adrian
, “
Turbulent flow over large-amplitude wavy surfaces
,”
J. Fluid Mech.
140
,
27
44
(
1984
).
27.
J. D.
Kuzan
,
T. J.
Hanratty
, and
R. J.
Adrian
, “
Turbulent flows with incipient separation over solid waves
,”
Exp. Fluids
7
,
88
98
(
1989
).
28.
J. D.
Hudson
,
L.
Dykhno
, and
T. J.
Hanratty
, “
Turbulence production in flow over a wavy wall
,”
Exp. Fluids
20
,
257
265
(
1996
).
29.
A.
Günther
and
P. R.
von Rohr
, “
Large-scale structures in a developed flow over a wavy wall
,”
J. Fluid Mech.
478
,
257
285
(
2003
).
30.
N.
Kruse
,
S.
Kuhn
, and
P. R.
von Rohr
, “
Wavy wall effects on turbulence production and large-scale modes
,”
J. Turbulence
7
,
31
(
2006
).
31.
S.
Kuhn
,
C.
Wagner
, and
P. R.
von Rohr
, “
Influence of wavy surfaces on coherent structures in a turbulent flow
,”
Exp. Fluids
43
,
251
259
(
2007
).
32.
V. M.
Segunda
,
M.
Tachie
, and
S.
Ormiston
, “
PIV investigation of turbulent flow over a wavy-wall in a horizontal channel
,” in
Proceedings of the ASME Fluids Engineering Division Summer Meeting
(
American Society of Mechanical Engineers
,
2016
).
33.
V. M.
Segunda
and
M.
Ormiston
, and
S.
Tachie
, “
Numerical analysis of turbulent flow over a wavy wall in a channel
,” in
Proceedings of the ASME Fluids Engineering Division Summer Meeting
(
American Society of Mechanical Engineers
,
2016
).
34.
G.
Blois
,
K. T.
Christensen
,
J. L.
Best
,
G.
Elliott
,
J.
Austin
,
C.
Dutton
,
M.
Bragg
,
M.
Garcia
, and
B.
Fouke
, “
A versatile refractive-index-matched flow facility for studies of complex flow systems across scientific disciplines
,” in
50th American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting
(
AIAA
,
Nashville, TN
,
2012
), pp.
2012
0736
.
35.
K.
Bai
and
J.
Katz
, “
On the refractive index of sodium iodide solutions for index matching in PIV
,”
Exp. Fluids
55
,
1705
(
2014
).
36.
K. A.
Flack
,
M. P.
Schultz
, and
T. A.
Shapiro
, “
Experimental support for townsends Reynolds number similarity hypothesis on rough walls
,”
Phys. Fluids
17
,
035102
(
2005
).
37.
Y.
Wu
and
K.
Christensen
, “
Outer-layer similarity in the presence of a practical rough-wall topography
,”
Phys. Fluids
19
,
085108
(
2007
).
38.
X.
Wu
and
P.
Moin
, “
Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer
,”
J. Fluid Mech.
630
,
5
41
(
2009
).
39.
K.
Christensen
, “
The influence of peak-locking errors on turbulence statistics computed from PIV ensembles
,”
Exp. Fluids
36
,
484
497
(
2004
).
40.
A.
Prasad
,
R.
Adrian
,
C.
Landreth
, and
P.
Offutt
, “
Effect of resolution on the speed and accuracy of particle image velocimetry interrogation
,”
Exp. Fluids
13
,
105
116
(
1992
).
You do not currently have access to this content.