Comprehensive wind tunnel experiments were carried out to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements were performed to characterize the variation of thrust force (both magnitude and direction) and generated power of the wind turbine under different operating conditions. Moreover, flow measurements, collected using high-resolution particle-image velocimetry as well as hot-wire anemometry, were employed to systematically study the flow in the upwind, near-wake, and far-wake regions. These measurements provide new insights into the effect of turbine operating conditions on flow characteristics in these regions. For the upwind region, the results show a strong lateral asymmetry under yawed conditions. For the near-wake region, the evolution of tip and root vortices was studied with the use of both instantaneous and phase-averaged vorticity fields. The results suggest that the vortex breakdown position cannot be determined based on phase-averaged statistics, particularly for tip vortices under turbulent inflow conditions. Moreover, the measurements in the near-wake region indicate a complex velocity distribution with a speed-up region in the wake center, especially for higher tip-speed ratios. In order to elucidate the meandering tendency of far wakes, particular focus was placed on studying the characteristics of large turbulent structures in the boundary layer and their interaction with wind turbines. Although these structures are elongated in the streamwise direction, their cross sections are found to have a size comparable to the rotor area, so that they can be affected by the presence of the turbine. In addition, the study of spatial coherence in turbine wakes reveals that any statistics based on streamwise velocity fluctuations cannot provide reliable information about the size of large turbulent structures in turbine wakes due to the effect of wake meandering. The results also suggest that the magnitude of wake meandering does not depend on turbine-operating conditions. Finally, the suitability of the proper orthogonal decomposition for studying wake meandering is examined.

1.
A.
Crespo
,
J.
Hernandez
, and
S.
Frandsen
, “
Survey of modelling methods for wind turbine wakes and wind farms
,”
Wind Energy
2
,
1
24
(
1999
).
2.
L.
Vermeer
,
J.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
510
(
2003
).
3.
J. N.
Sørensen
, “
Aerodynamic aspects of wind energy conversion
,”
Annu. Rev. Fluid Mech.
43
,
427
448
(
2011
).
4.
D.
Mehta
,
A.
Van Zuijlen
,
B.
Koren
,
J.
Holierhoek
, and
H.
Bijl
, “
Large eddy simulation of wind farm aerodynamics: A review
,”
J. Wind Eng. Ind. Aerodyn.
133
,
1
17
(
2014
).
5.
T.
Burton
,
D.
Sharpe
,
N.
Jenkins
, and
E.
Bossanyi
,
Wind Energy Handbook
, 1st ed. (
Wiley
,
1995
), p.
617
.
6.
P.
Krogstad
and
M. S.
Adaramola
, “
Performance and near wake measurements of a model horizontal axis wind turbine
,”
Wind Energy
15
,
743
756
(
2012
).
7.
A.
Ozbay
,
W.
Tian
,
Z.
Yang
, and
H.
Hu
, “
Interference of wind turbines with different yaw angles of the upstream wind turbine
,” in
42nd AIAA Fluid Dynamics Conference and Exhibit
(
AIAA
,
2012
), p.
2719
.
8.
T. F.
Pedersen
, “
On wind turbine power performance measurements at inclined airflow
,”
Wind Energy
7
,
163
176
(
2004
).
9.
Á.
Jiménez
,
A.
Crespo
, and
E.
Migoya
, “
Application of a LES technique to characterize the wake deflection of a wind turbine in yaw
,”
Wind Energy
13
,
559
572
(
2010
).
10.
J. N.
Sørensen
,
General Momentum Theory for Horizontal Axis Wind Turbines
(
Springer
,
2015
).
11.
J. F.
Manwell
,
J. G.
McGowan
, and
A. L.
Rogers
,
Wind Energy Explained: Theory, Design and Application
(
John Wiley & Sons
,
2010
).
12.
D.
Medici
,
S.
Ivanell
,
J.-Å.
Dahlberg
, and
P. H.
Alfredsson
, “
The upstream flow of a wind turbine: Blockage effect
,”
Wind Energy
14
,
691
697
(
2011
).
13.
G. C.
Larsen
and
K. S.
Hansen
, “
Full-scale measurements of aerodynamic induction in a rotor plane
,”
J. Phys.: Conf. Ser.
555
,
012063
(
2014
).
14.
A. R. M.
Forsting
,
N.
Troldborg
,
A.
Sathe
, and
N.
Angelou
, “
Analysis of two-dimensional inflow measurements by lidar-based wind scanners
,” presented in
11th EAWE Ph.D. Seminar on Wind Energy in Europe
,
23
25
Sept.
2015
,
Stuttgart, Germany
.
15.
E.
Simley
,
N.
Angelou
,
T.
Mikkelsen
,
M.
Sjöholm
,
J.
Mann
, and
L. Y.
Pao
, “
Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars
,”
J. Renewable Sustainable Energy
8
,
013301
(
2016
).
16.
D.
Medici
,
J.-Å.
Dahlberg
, and
P. H.
Alfredsson
, “
Measurements of the flow upstream a rotating wind turbine model
,” in
Progress in Turbulence III
(
Springer
,
2009
), pp.
87
90
.
17.
K. B.
Howard
and
M.
Guala
, “
Upwind preview to a horizontal axis wind turbine: A wind tunnel and field-scale study
,”
Wind Energy
19
,
1371
(
2015
).
18.
E.
Simley
,
L. Y.
Pao
,
P.
Gebraad
, and
M.
Churchfield
, “
Investigation of the impact of the upstream induction zone on lidar measurement accuracy for wind turbine control applications using large-eddy simulation
,”
J. Phys.: Conf. Ser.
524
,
012003
(
2014
).
19.
H.
Glauert
,
A General Theory of the Autogyro
(
HM Stationery Office
,
1926
).
20.
T.
Sant
, “
Improving BEM-based aerodynamic models in wind turbine design codes
,” Ph.D. thesis,
Delft University of Technology
,
2007
.
21.
W.
Haans
, “
Wind turbine aerodynamics in yaw: Unravelling the measured rotor wake
,” Ph.D. thesis,
TU Delft, Delft University of Technology
,
2011
.
22.
M. O. L.
Hansen
,
J. N.
Sørensen
,
S.
Voutsinas
,
N.
Sørensen
, and
H. A.
Madsen
, “
State of the art in wind turbine aerodynamics and aeroelasticity
,”
Prog. Aerosp. Sci.
42
,
285
330
(
2006
).
23.
W.
Haans
,
T.
Sant
,
G.
van Kuik
, and
G.
van Bussel
, “
Stall in yawed flow conditions: A correlation of blade element momentum predictions with experiments
,”
J. Sol. Energy Eng.
128
,
472
480
(
2006
).
24.
I.
Dobrev
,
B.
Maalouf
,
N.
Troldborg
, and
F.
Massouh
, “
Investigation of the wind turbine vortex structure
,” in
14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal
(
2008
), pp.
7
10
.
25.
W.
Zhang
,
C. D.
Markfort
, and
F.
Porté-Agel
, “
Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer
,”
Exp. Fluids
52
,
1219
1235
(
2012
).
26.
Z.
Yang
,
P.
Sarkar
, and
H.
Hu
, “
Visualization of the tip vortices in a wind turbine wake
,”
J. Visualization
15
,
39
44
(
2012
).
27.
W.
Zhang
,
C. D.
Markfort
, and
F.
Porté-Agel
, “
Wind-turbine wakes in a convective boundary layer: A wind-tunnel study
,”
Boundary-Layer Meteorol.
146
,
161
179
(
2013
).
28.
L. P.
Chamorro
,
D. R.
Troolin
,
S.-J.
Lee
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine
,”
Exp. Fluids
54
,
1459
(
2013
).
29.
M.
Sherry
,
J.
Sheridan
, and
D. L.
Jacono
, “
Characterisation of a horizontal axis wind turbine’s tip and root vortices
,”
Exp. Fluids
54
,
1417
(
2013
).
30.
M.
Sherry
,
A.
Nemes
,
D. L.
Jacono
,
H. M.
Blackburn
, and
J.
Sheridan
, “
The interaction of helical tip and root vortices in a wind turbine wake
,”
Phys. Fluids
25
,
117102
(
2013
).
31.
Y.
Odemark
and
J. H.
Fransson
, “
The stability and development of tip and root vortices behind a model wind turbine
,”
Exp. Fluids
54
,
1591
(
2013
).
32.
V. L.
Okulov
,
I. V.
Naumov
,
R. F.
Mikkelsen
,
I. K.
Kabardin
, and
J. N.
Sørensen
, “
A regular Strouhal number for large-scale instability in the far wake of a rotor
,”
J. Fluid Mech.
747
,
369
380
(
2014
).
33.
L.
Lignarolo
,
D.
Ragni
,
C.
Krishnaswami
,
Q.
Chen
,
C. S.
Ferreira
, and
G.
Van Bussel
, “
Experimental analysis of the wake of a horizontal-axis wind-turbine model
,”
Renewable Energy
70
,
31
46
(
2014
).
34.
J.
Whale
,
C. G.
Anderson
,
R.
Bareiss
, and
S.
Wagner
, “
An experimental and numerical study of the vortex structure in the wake of a wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
84
,
1
21
(
2000
).
35.
M.
Felli
,
R.
Camussi
, and
F.
Di Felice
, “
Mechanisms of evolution of the propeller wake in the transition and far fields
,”
J. Fluid Mech.
682
,
5
53
(
2011
).
36.
G. V.
Iungo
,
F.
Viola
,
S.
Camarri
,
F.
Porté-Agel
, and
F.
Gallaire
, “
Linear stability analysis of wind turbine wakes performed on wind tunnel measurements
,”
J. Fluid Mech.
737
,
499
526
(
2013
).
37.
F.
Viola
,
G. V.
Iungo
,
S.
Camarri
,
F.
Porté-Agel
, and
F.
Gallaire
, “
Prediction of the hub vortex instability in a wind turbine wake: Stability analysis with eddy-viscosity models calibrated on wind tunnel data
,”
J. Fluid Mech.
750
,
R1
(
2014
).
38.
L. P.
Chamorro
and
F.
Porté-Agel
, “
A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects
,”
Boundary-Layer Meteorol.
132
,
129
149
(
2009
).
39.
L. P.
Chamorro
and
F.
Porté-Agel
, “
Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study
,”
Boundary-Layer Meteorol.
136
,
515
533
(
2010
).
40.
P.
Hancock
and
F.
Pascheke
, “
Wind-tunnel simulation of the wake of a large wind turbine in a stable boundary layer. Part 2. The wake flow
,”
Boundary-Layer Meteorol.
151
,
23
37
(
2014
).
41.
P.
Hancock
and
S.
Zhang
, “
A wind-tunnel simulation of the wake of a large wind turbine in a weakly unstable boundary layer
,”
Boundary-Layer Meteorol.
156
,
395
413
(
2015
).
42.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new analytical model for wind-turbine wakes
,”
Renewable Energy
70
,
116
123
(
2014
).
43.
S.
Xie
and
C.
Archer
, “
Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation
,”
Wind Energy
18
,
1815
1838
(
2015
).
44.
M.
Abkar
and
F.
Porté-Agel
, “
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
,”
Phys. Fluids
27
,
035104
(
2015
).
45.
J. N.
Sørensen
,
R. F.
Mikkelsen
,
D. S.
Henningson
,
S.
Ivanell
,
S.
Sarmast
, and
S. J.
Andersen
, “
Simulation of wind turbine wakes using the actuator line technique
,”
Philos. Trans. R. Soc., A
373
,
20140071
(
2015
).
46.
G. C.
Larsen
,
H. A.
Madsen
,
K.
Thomsen
, and
T. J.
Larsen
, “
Wake meandering: A pragmatic approach
,”
Wind Energy
11
,
377
395
(
2008
).
47.
D.
Medici
and
P.
Alfredsson
, “
Measurement on a wind turbine wake: 3D effects and bluff body vortex shedding
,”
Wind Energy
9
,
219
236
(
2006
).
48.
G.
España
,
S.
Aubrun
,
S.
Loyer
, and
P.
Devinant
, “
Spatial study of the wake meandering using modelled wind turbines in a wind tunnel
,”
Wind Energy
14
,
923
937
(
2011
).
49.
G.
España
,
S.
Aubrun
,
S.
Loyer
, and
P.
Devinant
, “
Wind tunnel study of the wake meandering downstream of a modelled wind turbine as an effect of large scale turbulent eddies
,”
J. Wind Eng. Ind. Aerodyn.
101
,
24
33
(
2012
).
50.
S. J.
Andersen
,
J. N.
Sørensen
, and
R.
Mikkelsen
, “
Simulation of the inherent turbulence and wake interaction inside an infinitely long row of wind turbines
,”
J. Turbul.
14
,
1
24
(
2013
).
51.
K. E.
Meyer
,
I. V.
Naumov
,
I.
Kabardin
,
R.
Mikkelsen
, and
J. N.
Sørensen
, “
PIV in a model wind turbine rotor wake
,” in
10th International Symposium on Particle Image Velocimetry
,
Delft, The Netherlands
,
1–3 July 2013
.
52.
D.
Bastine
,
B.
Witha
,
M.
Wächter
, and
J.
Peinke
, “
Towards a simplified dynamic wake model using POD analysis
,”
Energies
8
,
895
920
(
2015
).
53.
N.
Hamilton
,
M.
Tutkun
, and
R. B.
Cal
, “
Wind turbine boundary layer arrays for Cartesian and staggered configurations. Part II. Low-dimensional representations via the proper orthogonal decomposition
,”
Wind Energy
18
,
297
315
(
2015
).
54.
N.
Hamilton
,
M.
Tutkun
, and
R. B.
Cal
, “
Low-order representations of the canonical wind turbine array boundary layer via double proper orthogonal decomposition
,”
Phys. Fluids
28
,
025103
(
2016
).
55.
F.
Porté-Agel
,
Y. T.
Wu
,
H.
Lu
, and
R. J.
Conzemius
, “
Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
,”
J. Wind Eng. Ind. Aerodyn.
99
,
154
168
(
2011
).
56.
M.
Guala
,
S.
Hommema
, and
R.
Adrian
, “
Large-scale and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
554
,
521
542
(
2006
).
57.
J. R.
Garratt
, “
Review: The atmospheric boundary layer
,”
Earth-Sci. Rev.
37
,
89
134
(
1994
).
58.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Springer Science
,
2009
), Vol. 13.
59.
A.
Perry
,
S.
Henbest
, and
M.
Chong
, “
A theoretical and experimental study of wall turbulence
,”
J. Fluid Mech.
165
,
163
199
(
1986
).
60.
F.
Porté-Agel
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer
,”
J. Fluid Mech.
415
,
261
284
(
2000
).
61.
P. C.
Sen
,
Principles of Electric Machines and Power Electronics
(
John Wiley & Sons
,
2007
).
62.
B. D.
Hibbs
, “
HAWT performance with dynamic stall
,” Technical Report No. SERI/STR-217-2732, DE 86004428 (
Solar Energy Research Institute
,
1986
).
63.
W. Z.
Shen
,
R.
Mikkelsen
,
J. N.
Sørensen
, and
C.
Bak
, “
Tip loss corrections for wind turbine computations
,”
Wind Energy
8
,
457
475
(
2005
).
64.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
1
28
(
2007
).
65.
J. H.
Lee
and
H. J.
Sung
, “
Very-large-scale motions in a turbulent boundary layer
,”
J. Fluid Mech.
673
,
80
120
(
2011
).
66.
K.
Kim
and
R.
Adrian
, “
Very large-scale motion in the outer layer
,”
Phys. Fluids
11
,
417
422
(
1999
).
67.
J.
Fang
and
F.
Porté-Agel
, “
Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer
,”
Boundary-Layer Meteorol.
155
,
397
416
(
2015
).
68.
B.
Balakumar
and
R.
Adrian
, “
Large-and very-large-scale motions in channel and boundary-layer flows
,”
Philos. Trans. R. Soc., A
365
,
665
681
(
2007
).
69.
N.
Hutchins
,
K.
Chauhan
,
I.
Marusic
,
J.
Monty
, and
J.
Klewicki
, “
Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory
,”
Boundary-Layer Meteorol.
145
,
273
306
(
2012
).
70.
S. E.
Widnall
, “
The stability of a helical vortex filament
,”
J. Fluid Mech.
54
,
641
663
(
1972
).
71.
S.
Sarmast
,
R.
Dadfar
,
R. F.
Mikkelsen
,
P.
Schlatter
,
S.
Ivanell
,
J. N.
Sørensen
, and
D. S.
Henningson
, “
Mutual inductance instability of the tip vortices behind a wind turbine
,”
J. Fluid Mech.
755
,
705
731
(
2014
).
72.
N.
Tobin
,
A. M.
Hamed
, and
L. P.
Chamorro
, “
An experimental study on the effects of winglets on the wake and performance of a model wind turbine
,”
Energies
8
,
11955
11972
(
2015
).
73.
P.
Chakraborty
,
S.
Balachandar
, and
R. J.
Adrian
, “
On the relationships between local vortex identification schemes
,”
J. Fluid Mech.
535
,
189
214
(
2005
).
74.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
75.
A.
Heyes
,
R.
Jones
, and
D.
Smith
, “
Wandering of wing-tip vortices
,” in
Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics
(
2004
), pp.
35
43
.
76.
S. J.
Beresh
,
J. F.
Henfling
, and
R. W.
Spillers
, “
Meander of a fin trailing vortex and the origin of its turbulence
,”
Exp. Fluids
49
,
599
611
(
2010
).
77.
M.
Bastankhah
and
F.
Porté-Agel
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
78.
P. A.
Fleming
,
P. M. O.
Gebraad
,
S.
Lee
,
J.
van Wingerden
,
K.
Johnson
,
M.
Churchfield
,
J.
Michalakes
,
P.
Spalart
, and
P.
Moriarty
, “
Evaluating techniques for redirecting turbine wakes using SOWFA
,”
Renewable Energy
70
,
211
218
(
2014
).
79.
P. E. J.
Vermeulen
, “
An experimental analysis of wind turbine wakes
,” in
3rd International Symposium on Wind Energy Systems, Lyngby
(
1980
), pp.
431
450
.
80.
L.
Lignarolo
,
D.
Ragni
,
C.
Krishnaswami
,
Q.
Chen
,
C.
Simao Ferreira
, and
G.
van Bussel
, “
Experimental analysis of the kinetic energy transport and turbulence production in the wake of a model wind turbine
,” in
ICOWES Conference, Lyngby
(
2013
), pp.
16
19
.
81.
L. P.
Chamorro
,
C.
Hill
,
S.
Morton
,
C.
Ellis
,
R.
Arndt
, and
F.
Sotiropoulos
, “
On the interaction between a turbulent open channel flow and an axial-flow turbine
,”
J. Fluid Mech.
716
,
658
670
(
2013
).
82.
L. P.
Chamorro
,
M.
Guala
,
R.
Arndt
, and
F.
Sotiropoulos
, “
On the evolution of turbulent scales in the wake of a wind turbine model
,”
J. Turbul.
13
,
N27
(
2012
).
83.
E.
Barlas
,
S.
Buckingham
, and
J.
van Beeck
, “
Roughness effects on wind-turbine wake dynamics in a boundary-layer wind tunnel
,”
Boundary-Layer Meteorol.
158
,
27
42
(
2016
).
84.
M. F.
Howland
,
J.
Bossuyt
,
L. A.
Martínez-Tossas
,
J.
Meyers
, and
C.
Meneveau
, “
Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions
,”
J. Renewable Sustainable Energy
8
,
043301
(
2016
).
85.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
86.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. Part I. Coherent structures
,”
Q. Appl. Math.
45
,
561
571
(
1987
).
87.
P.
Holmes
,
J. L.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
1998
).
88.
A.
Chatterjee
, “
An introduction to the proper orthogonal decomposition
,”
Current Sci.
78
,
808
817
(
2000
).
89.
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
,
Springer Handbook of Experimental Fluid Mechanics
(
Springer Science & Business Media
,
2007
), Vol. 1.
90.
K. E.
Meyer
,
J. M.
Pedersen
, and
O.
Özcan
, “
A turbulent jet in crossflow analysed with proper orthogonal decomposition
,”
J. Fluid Mech.
583
,
199
227
(
2007
).
91.
J.
Burkardt
,
M.
Gunzburger
, and
H.-C.
Lee
, “
POD and CVT-based reduced-order modeling of Navier–Stokes flows
,”
Comput. Methods Appl. Mech. Eng.
196
,
337
355
(
2006
).
You do not currently have access to this content.