The destabilization of modal perturbations in the classical diverging Jeffery-Hamel (JH) flow has been long-known. The converging JH flow is far less-studied, but it is known that convergence suppresses modal instabilities. We make a parallel-flow approximation following previous studies, to examine its non-modal stability at small convergent and divergent angles and show that non-modal growth is extremely sensitive to the angle of convergence/divergence at high Reynolds numbers. The transient growth of energy is significantly suppressed at high Reynolds numbers as the wall angle is varied from divergence to convergence by just a few hundredths of a degree. This finding is especially relevant for convergent channels, where the flow is stable to linear modal perturbations up to the Reynolds numbers of the order of 105 or larger. In all the cases, streamwise-aligned rolls (which are a characteristic of the lift-up mechanism) are the initial perturbations that display the largest energy growth. The spanwise separation between the rolls decreases significantly with channel convergence. Our findings indicate that extremely small imperfections in the wall alignment in channel flows can drastically affect the experimental measurements of algebraic growth of the disturbance kinetic energy, as minute amounts of wall convergence can strongly reduce the maximum transient growth.

1.
N. G.
Nguyen
and
Z.
Wu
, “
Micromixers—A review
,”
J. Micromech. Microeng.
15
,
R1
(
2005
).
2.
E. K.
Sackmann
,
A. L.
Fulton
, and
D. J.
Beebe
, “
The present and future role of microfluidics in biomedical research
,”
Nature
507
,
181
189
(
2014
).
3.
P. M.
Eagles
, “
The stability of a family of Jeffery Hamel solutions for a divergent channel flow
,”
J. Fluid Mech.
24
,
191
207
(
1966
).
4.
T.
Cubaud
and
T. G.
Mason
, “
High-viscosity fluid threads in weakly diffusive microfluidic systems
,”
New J. Phys.
11
,
075029
(
2009
).
5.
C. L.
Sun
and
J. Y.
Sie
, “
Active mixing in diverging microchannels
,”
Microfluid. Nanofluid.
8
,
485
495
(
2010
).
6.
B. M.
Jose
and
T.
Cubaud
, “
Droplet arrangement and coalescence in diverging/converging microchannels
,”
Microfluid. Nanofluid.
12
,
687
696
(
2012
).
7.
V. S.
Duryodhan
,
S. G.
Singh
, and
A.
Agarwal
, “
Liquid flow through a diverging microchannel
,”
Microfluid. Nanofluid.
14
,
53
67
(
2013
).
8.
G. B.
Jeffery
, “
The two-dimensional steady motion of a viscous fluid
,”
Philos. Mag. Ser.
29
,
455
465
(
1915
).
9.
G.
Hamel
, “
Spiralförmige bewegungen zäher flüssigkeiten
,”
Jahrb. Deutsch. Macth. Ver.
25
,
34
60
(
1916
).
10.
L. E.
Fraenkel
, “
Laminar flow in symmetrical channels with slightly curved walls. I. On the Jeffery-Hamel solutions for flow between plane walls
,”
Proc. R. Soc. A
267
,
119
138
(
1962
).
11.
P. M.
Eagles
, “
Supercritical flow in divergent channel
,”
J. Fluid Mech.
57
,
149
160
(
1973
).
12.
P. M.
Eagles
and
M. A.
Weissman
, “
On the stability of slowly varying flow: The diverging channel
,”
J. Fluid Mech.
69
,
241
262
(
1975
).
13.
M. J.
Allmen
and
P. M.
Eagles
, “
Stability of divergent channel flows: A numerical approach
,”
Proc. R. Soc. A
392
,
359
372
(
1984
).
14.
W. H. H.
Banks
,
P. G.
Drazin
, and
M. B.
Zaturska
, “
On perturbations of Jeffery-Hamel flow
,”
J. Fluid Mech.
186
,
559
581
(
1988
).
15.
M.
Hamadiche
,
J.
Scott
, and
D.
Jeandel
, “
Temporal stability of Jeffery-Hamel flow
,”
J. Fluid Mech.
268
,
71
88
(
1994
).
16.
O. R.
Tutty
, “
Nonlinear development of flow in channels with non-parallel walls
,”
J. Fluid Mech.
326
,
265
284
(
1996
).
17.
S. C. R.
Dennis
,
W. H. H.
Banks
,
P. G.
Drazin
, and
M. B.
Zaturska
, “
Flow through divergent channel
,”
J. Fluid Mech.
336
,
183
202
(
1997
).
18.
I. J.
Sobey
and
P. G.
Drazin
, “
Bifurcation of two-dimensional channel flows
,”
J. Fluid Mech.
171
,
263
287
(
1986
).
19.
R. R.
Kerswell
,
O. R.
Tutty
, and
P. G.
Drazin
, “
Steady nonlinear waves in diverging channel fow
,”
J. Fluid Mech.
501
,
231
250
(
2004
).
20.
V.
Putkaradze
and
P.
Vorobieff
, “
Instabilities, bifurcations, and solutions in expanding channel flows
,”
Phys. Rev. Lett.
97
,
144502
(
2006
).
21.
P. E.
Haines
,
R. E.
Hewitt
, and
A. L.
Hazel
, “
The Jeffery-Hamel similarity solution and its relation to flow in a diverging channel
,”
J. Fluid Mech.
687
,
404
430
(
2011
).
22.
G.
Swaminathan
,
K. C.
Sahu
,
A.
Sameen
, and
R.
Govindarajan
, “
Global instabilities in diverging channel flows
,”
Theor. Comput. Fluid Dyn.
25
,
53
64
(
2011
).
23.
C. D.
Cantwell
,
D.
Moxey
,
A.
Comerford
,
A.
Bolis
,
G.
Rocco
,
G.
Mengaldo
,
D.
de Grazia
,
S.
Yakovlev
,
J.-E.
Lombard
,
D.
Ekelschot
,
B.
Jordi
,
H.
Xu
,
Y.
Mohamied
,
C.
Eskilsson
,
B.
Nelson
,
P.
Vos
,
C.
Biotto
,
R. M.
Kirby
, and
S. J.
Sherwin
, “
Nektar++: An open-source spectral/hp element framework
,”
Comput. Phys. Commun.
192
,
205
219
(
2015
).
24.
G.
Swaminathan
, “
Global stability analysis of non-parallel flows
,” in
Engineering Mechanics Unit
(
Jawaharlal Nehru Centre for Advanced Scientific Research
,
Bangalore, India
,
2010
).
25.
K. C.
Sahu
and
R.
Govindarajan
, “
Stability of flow through a slowly diverging pipe
,”
J. Fluid Mech.
531
,
325
334
(
2005
).
26.
J.
Peixinho
, “
Flow in a slowly divergent pipe section
,” in
7th IUTAM Symposium on Laminar-Turbulent Transition
(
Springer
,
2010
), Vol. 18, https://link.springer.com/chapter/10.1007%2F978-90-481-3723-7_49.
27.
J.
Peixinho
, “
Transition to turbulence in slowly divergent pipe flow
,”
Phys. Fluids
25
,
111702
(
2013
).
28.
Y.
Duguet
, “
Pipe flow clogged with turbulence
,”
J. Fluid Mech.
776
,
1
4
(
2015
).
29.
M. R.
Jotkar
, “
Effects of wall-geometry on the stability of channel flow, and of variable properties on film flow
,” Ph.D. Thesis (
Tata Institute of Fundamental Research Centre for Interdisciplinary Sciences
,
Hyderabad, India
,
2016
).
30.
G. K.
Batchelor
,
An Introduction to Fluid Mechanics
(
Cambridge University Press
,
1993
).
31.
M.
Shapira
,
D.
Degani
, and
D.
Weihs
, “
Stability and existence of multiple solutions for viscous flow in suddenly enlarged channels
,”
Comput. Fluids
18
,
239
258
(
1990
).
32.
P. G.
Drazin
, “
Flow through a diverging channel: Instability and bifurcation
,”
Fluid Dyn. Res.
24
,
321
327
(
1999
).
33.
I. J.
Sobey
, “
On flow through furrowed channels. Part I. Calculated flow patterns
,”
J. Fluid Mech.
96
,
1
26
(
1980
).
34.
K. D.
Stephanoff
,
I. J.
Sobey
, and
B. J.
Bellhouse
, “
On flow through furrowed channels. Part II. Observed flow patterns
,”
J. Fluid Mech.
96
,
27
32
(
1980
).
35.
A.
Hooper
,
B. R.
Duffy
, and
H. K.
Moffat
, “
Flow of fluid of non-uniform viscosity in converging and diverging channels
,”
J. Fluid Mech.
117
,
283
304
(
1982
).
36.
A. M.
Guzman
and
C. H.
Amon
, “
Transition to chaos in converging-diverging channel flows: Ruelle-Takens-Newhouse scenario
,”
Phys. Fluids
6
,
1994
2002
(
1994
).
37.
A.
Cabal
,
J.
Szumbarski
, and
J. M.
Floryan
, “
Stability of flow in a wavy channel
,”
J. Fluid Mech.
457
,
191
212
(
2002
).
38.
J. M.
Floryan
, “
Vortex instability in a diverging-converging channel
,”
J. Fluid Mech.
482
,
17
50
(
2003
).
39.
J. M.
Floryan
, “
Two-dimensional instability of flow in a rough channel
,”
Phys. Fluids
17
,
044101
(
2005
).
40.
J.
Szumbarski
and
J. M.
Floryan
, “
Transient disturbance growth in a corrugated channel
,”
J. Fluid Mech.
568
,
243
272
(
2006
).
41.
J. M.
Floryan
and
C.
Floryan
, “
Traveling wave instability in a diverging-converging channel
,”
Fluid Dyn. Res.
42
,
025509
(
2006
).
42.
K.
Fujimura
, “
On the linear stability of Jeffery-Hamel flow in a convergent channel
,”
J. Phys. Soc. Jpn.
51
,
2000
2009
(
1982
).
43.
R. A.
McAlpine
and
R. P. G.
Drazin
, “
On the spatio-temporal development of small perturbations of Jeffery-Hamel flows
,”
Fluid Dyn. Res.
22
(
3
),
123
(
1998
).
44.
R.
Govindarajan
and
R.
Narasimha
, “
A low order theory for stability of non-parallel boundary layer flows
,”
Proc. R. Soc. A
453
,
2537
2549
(
1997
).
45.
R.
Govindarajan
and
R.
Narasimha
, “
A low-order parabolic theory for two-dimensional boundary layer stability
,”
Phys. Fluids
11
,
1449
1458
(
1999
).
46.
M.
Gaster
, “
On the effects of boundary layer growth on flow stability
,”
J. Fluid Mech.
66
,
465
480
(
1974
).
47.
F. P.
Bertolotti
,
T.
Herbert
, and
P. R.
Spalart
, “
Linear and nonlinear stability of the Blasius boundary layer
,”
J. Fluid Mech.
242
,
441
474
(
1992
).
48.
R.
Govindarajan
and
R.
Narasimha
, “
Stability of spatially developing boundary layers in pressure gradients
,”
J. Fluid Mech.
300
,
117
147
(
1995
).
49.
J.
Hoepffner
,
L.
Brandt
, and
D. S.
Henningson
, “
Transient growth on boundary layer streaks
,”
J. Fluid Mech.
537
,
91
100
(
2005
).
50.
C.
Cossu
,
G.
Pujals
, and
S.
Depardon
, “
Optimal transient growth and very large-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
619
,
79
94
(
2009
).
51.
J.-M.
Lucas
, “
Spatial optimal perturbations for transient growth analysis in three-dimensional boundary layers
,” Ph.D. Thesis (
Université de Toulouse
,
Toulouse, France
,
2014
).
52.
H.
Schlichting
,
Boundary-Layer Theory
(
McGraw-Hill
,
1995
).
53.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
(
Cambridge University Press
,
1981
).
54.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer-Verlag
,
2001
).
55.
P. J.
Schmid
and
D. S.
Henningson
, “
Optimal density energy in Hagen-Poiseuille flow
,”
J. Fluid Mech.
277
,
197
225
(
1994
).
56.
M.
Nishioka
and
M.
Asai
, “
Some observations of the subcritical transition in plane Poiseuille flow
,”
J. Fluid Mech.
150
,
441
450
(
1985
).
57.
P. A.
Elofsson
and
P. H.
Alfredsson
, “
An experimental study of oblique transition in plane Poiseuille flow
,”
J. Fluid Mech.
358
,
177
202
(
1998
).
58.
B.
Hof
,
C. W. H.
van Doorne
,
J.
Westerweel
,
F. T. M.
Nieuwstadt
,
H.
Faisst
,
B.
Eckhardt
,
H.
Wedin
,
R. R.
Kerswell
, and
F.
Waleffe
, “
Experimental observation of nonlinear traveling waves in turbulent pipe flow
,”
Science
305
,
1594
(
2004
).
59.
B.
Hof
,
J.
Westerweel
,
T. M.
Schneider
, and
B.
Eckhardt
, “
Finite lifetime of turbulence in shear flows
,”
Nature
443
,
59
62
(
2006
).
60.
K.
Avila
,
D.
Moxey
,
A.
De Lozar
,
M.
Avila
,
D.
Barkley
, and
B.
Hof
, “
The onset of turbulence in pipe flow
,”
Science
333
,
192
196
(
2011
).
61.
K. M.
Butler
and
B. F.
Farrell
, “
Three-dimensional optimal perturbations in viscous shear flow
,”
Phys. Fluids A
4
,
1637
1650
(
1992
).
62.
S. C.
Reddy
and
D. S.
Henningson
, “
Energy growth in viscous channel flows
,”
J. Fluid Mech.
252
,
209
238
(
1993
).
63.
S. A.
Orszag
and
A. T.
Patera
, “
Subcritical transition to turbulence in plane channel flows
,”
Phys. Rev. Lett.
45
,
989
(
1980
).
64.
L. S.
Tuckerman
,
T.
Kreilos
,
H.
Schrobsdorff
,
T. M.
Schneider
, and
J. F.
Gibson
, “
Turbulent-laminar patterns in plane Poiseuille flow
,”
Phys. Fluids
26
,
114103
(
2014
).
65.
M.
Nishioka
,
S.
Iida
, and
Y.
Ichikawa
, “
An experimental investigation of the stability of plane Poiseuille flow
,”
J. Fluid Mech.
72
,
731
751
(
1975
).
66.
C.
Arratia
,
C. P.
Caulfield
, and
J.-M.
Chomaz
, “
Transient perturbation growth in time-dependent mixing layers
,”
J. Fluid Mech.
717
,
90
133
(
2013
).
67.
H.
Vitoshkin
,
E.
Heifetz
,
A. Y.
Gelfgat
, and
N.
Harnik
, “
On the role of vortex stretching in energy optimal growth of three-dimensional perturbations on plane parallel shear flows
,”
J. Fluid Mech.
707
,
369
380
(
2012
).
68.
W. M. F.
Orr
, “
The stability or instability of the steady motions of a perfect liquid and of a viscous liquid
,”
Proc. R. Irish Acad. A
27
,
69
138
(
1907
), http://www.jstor.org/stable/20490591.
You do not currently have access to this content.