Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials,” Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., “Dynamics of a gas containing small solid particles,” Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various test problems ranging from separated phases in a shock tube to shock–particle cloud interaction. Its predictions are compared to BN and Marble models as well as against experimental data showing clear improvements.

1.
Abgrall
,
R.
and
Saurel
,
R.
, “
Discrete equations for physical and numerical compressible multiphase mixtures
,”
J. Comput. Phys.
186
(
2
),
361
396
(
2003
).
2.
Ambroso
,
A.
,
Chalons
,
C.
, and
Raviart
,
P. A.
, “
A Godunov-type method for the seven-equation model of compressible two-phase flow
,”
Comput. Fluids
54
,
67
91
(
2012
).
3.
Anderson
,
T. B.
and
Jackson
,
R.
, “
Fluid mechanical description of fluidized beds. Equations of motion
,”
Ind. Eng. Chem. Fundam.
6
(
4
),
527
539
(
1967
).
4.
Baer
,
M. R.
and
Nunziato
,
J. W.
, “
A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials
,”
Int. J. Multiphase Flow
12
(
6
),
861
889
(
1986
).
5.
Bdzil
,
J. B.
,
Menikoff
,
R.
,
Son
,
S. F.
,
Kapila
,
A. K.
, and
Stewart
,
D. S.
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues
,”
Phys. Fluids
11
(
2
),
378
402
(
1999
).
6.
Bernecker
,
R. R.
and
Price
,
D.
, “
Studies in the transition from deflagration to detonation in granular explosives—II. Transitional characteristics and mechanisms observed in 91/9 RDX/Wax
,”
Combust. Flame
22
(
1
),
119
129
(
1974
).
7.
Chinnayya
,
A.
,
Daniel
,
E.
, and
Saurel
,
R.
, “
Modelling detonation waves in heterogeneous energetic materials
,”
J. Comput. Phys.
196
(
2
),
490
538
(
2004
).
8.
Deledicque
,
V.
and
Papalexandris
,
M. V.
, “
An exact Riemann solver for compressible two-phase flow models containing non-conservative products
,”
J. Comput. Phys.
222
(
1
),
217
245
(
2007
).
9.
Delhaye
,
J. M.
and
Achard
,
J. L.
, “
On the averaging operators introduced in two-phase flow modeling
,” in
Proceedings CSNI Specialist Meeting in Transient Two-Phase Flow
(
Hemisphere Press
,
1976
), Vol. 1, pp.
5
84
.
10.
Drew
,
D. A.
and
Passman
,
S. L.
,
Theory of Multicomponent Fluids
(
Springer Science & Business Media
,
2006
), Vol. 135.
11.
Ergun
,
S.
, “
Fluid flow through packed columns
,”
Chem. Eng. Prog.
48
,
89
94
(
1952
).
12.
Furfaro
,
D.
and
Saurel
,
R.
, “
A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows
,”
Comput. Fluids
111
,
159
178
(
2015
).
13.
Gavrilyuk
,
S.
and
Saurel
,
R.
, “
Mathematical and numerical modeling of two-phase compressible flows with micro-inertia
,”
J. Comput. Phys.
175
(
1
),
326
360
(
2002
).
14.
Ghidaglia
,
J. M.
,
Kumbaro
,
A.
, and
Le Coq
,
G.
, “
On the numerical solution to two fluid models via a cell centered finite volume method
,”
Eur. J. Mech.-B/Fluids
20
(
6
),
841
867
(
2001
).
15.
Houim
,
R. W.
and
Oran
,
E. S.
, “
A multiphase model for compressible granular–gaseous flows: Formulation and initial tests
,”
J. Fluid Mech.
789
,
166
220
(
2016
).
16.
Kapila
,
A. K.
,
Menikoff
,
R.
,
Bdzil
,
J. B.
,
Son
,
S. F.
, and
Stewart
,
D. S.
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations
,”
Phys. Fluids
13
(
10
),
3002
3024
(
2001
).
17.
Lhuillier
,
D.
,
Chang
,
C. H.
, and
Theofanous
,
T. G.
, “
On the quest for a hyperbolic effective-field model of disperse flows
,”
J. Fluid Mech.
731
,
184
194
(
2013
).
18.
Marble
,
F. E.
, “
Dynamics of a gas containing small solid particles
,” in
Combustion and Propulsion
(5th AGARD Colloquium) (
Pergamon Press
,
1963
), Vol. 175.
19.
McGrath
 II,
T. P.
,
Clair
,
J. G. S.
, and
Balachandar
,
S.
, “
A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes
,”
J. Appl. Phys.
119
(
17
),
174903
(
2016
).
20.
Petitpas
,
F.
,
Saurel
,
R.
,
Franquet
,
E.
, and
Chinnayya
,
A.
, “
Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations
,”
Shock Waves
19
(
5
),
377
401
(
2009
).
21.
Rogue
,
X.
,
Rodriguez
,
G.
,
Haas
,
J. F.
, and
Saurel
,
R.
, “
Experimental and numerical investigation of the shock-induced fluidization of a particle bed
,”
Shock Waves
8
(
1
),
29
45
(
1998
).
22.
Romenski
,
E.
and
Toro
,
E. F.
, “
Compressible two-phase flows: Two-pressure models and numerical methods
,”
Comput. Fluid Dyn. J.
13
,
403
416
(
2004
).
23.
Rusanov
,
V. V. E.
, “
The calculation of the interaction of non-stationary shock waves and obstacles
,”
USSR Comput. Math. Math. Phys.
1
(
2
),
304
320
(
1962
).
24.
Saurel
,
R.
,
Daniel
,
E.
, and
Loraud
,
J. C.
, “
Two-phase flows—Second-order schemes and boundary conditions
,”
AIAA J.
32
(
6
),
1214
1221
(
1994
).
25.
Saurel
,
R.
and
Abgrall
,
R.
, “
A multiphase Godunov method for compressible multifluid and multiphase flows
,”
J. Comput. Phys.
150
(
2
),
425
467
(
1999
).
26.
Saurel
,
R.
,
Gavrilyuk
,
S.
, and
Renaud
,
F.
, “
A multiphase model with internal degrees of freedom: Application to shock–bubble interaction
,”
J. Fluid Mech.
495
,
283
321
(
2003
).
27.
Saurel
,
R.
,
Favrie
,
N.
,
Petitpas
,
F.
,
Lallemand
,
M. H.
, and
Gavrilyuk
,
S. L.
, “
Modelling dynamic and irreversible powder compaction
,”
J. Fluid Mech.
664
,
348
396
(
2010
).
28.
Saurel
,
R.
,
Le Martelot
,
S.
,
Tosello
,
R.
, and
Lapebie
,
E.
, “
Symmetric model of compressible granular mixtures with permeable interfaces
,”
Phys. Fluids
26
(
12
),
123304
(
2014
).
29.
Saurel
,
R.
and
Pantano-Rubio
,
C.
, “
Diffuse interfaces and capturing methods in compressible two-phase flow
,”
Annu. Rev. Fluid Mech.
(published online).
30.
Schwendeman
,
D. W.
,
Wahle
,
C. W.
, and
Kapila
,
A. K.
, “
The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow
,”
J. Comput. Phys.
212
(
2
),
490
526
(
2006
).
31.
Toro
,
E. F.
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer Science and Business Media
,
2013
).
32.
Wood
,
A. B.
,
A Textbook of Sound
(
G. Bell and Sons Ltd.
,
London
,
1930
).
33.
Zeldovich
,
Y. B.
, “
Gravitational instability: An approximate theory for large density perturbations
,”
Astron. Astrophys.
5
,
84
89
(
1970
).
You do not currently have access to this content.