We study non-isothermal buoyancy-driven exchange flow of two miscible Newtonian fluids in an inclined pipe experimentally. The heavy cold fluid is released into the light hot one in an adiabatic small-aspect-ratio pipe under the Boussinesq limit (small Atwood number). At a fixed temperature, the two fluids involved have the same viscosity. Excellent qualitative and quantitative agreement is first found against rather recent studies in literature on isothermal flows where the driving force of the flow comes from salinity as opposed to temperature difference. The degree of flow instability and mixing enhances as the pipe is progressively inclined towards vertical. Similar to the isothermal limit, maximal rate of the fluids interpenetration in the non-isothermal case occurs at an intermediate angle, β. The interpenetration rate increases with the temperature difference. The degree of fluids mixing and diffusivity is found to increase in the non-isothermal case compared to the isothermal one. There has also been observed a novel asymmetric behavior in the flow, never reported before in the isothermal limit. The cold finger appears to advance faster than the hot one. Backed by meticulously designed supplementary experiments, this asymmetric behavior is hypothetically associated with the wall contact and the formation of a warm less-viscous film of the fluid lubricating the cold more-viscous finger along the pipe. On the other side of the pipe, a cool more-viscous film forms decelerating the hot less-viscous finger. Double diffusive effects associated with the diffusion of heat and mass (salinity) are further investigated. In this case and for the same range of inclination angles and density differences, the level of flow asymmetry is found to decrease. The asymmetric behaviour of the flow is quantified over the full range of experiments. Similar to the study of Salort et al. [“Turbulent velocity profiles in a tilted heat pipe,” Phys. Fluids 25(10), 105110-1–105110-16 (2013)] for tilted heat pipes, a small Richardson number of Ri0.05 is found, above which flow laminarization occurs. In terms of the dimensionless numbers of the problem, it is found that the interpenetrative speeds of the heavy and light fluid layers in non-isothermal and double-diffusive cases increase with the dimensionless temperature difference, rT, Atwood number, At, Grashof number, Gr, Reynolds number, Re, Nahme number, Na, and Péclet number, Pe but decreases with Prandtl number, Pr, and Brinkman number, Br.

1.
T.
Benjamin
, “
Gravity currents and related phenomena
,”
J. Fluid Mech.
31
,
209
248
(
1968
).
2.
D.
Hoult
, “
Oil spreading in the sea
,”
Annu. Rev. Fluid Mech.
4
,
341
368
(
1972
).
3.
J.
Whitehead
and
K.
Helfrich
, “
Instability of flow with temperature-dependent viscosity: A model of magma dynamics
,”
J. Geophys. Res.: Solid Earth
96
(
B3
),
4145
4155
, doi:10.1029/90jb02342 (
1991
).
4.
J.
Simpson
,
Gravity Currents in the Environment and the Laboratory
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1997
).
5.
J.
Shin
,
S.
Dalziel
, and
P.
Linden
, “
Gravity currents produced by lock exchange
,”
J. Fluid Mech.
521
,
1
34
(
2004
).
6.
V.
Birman
,
J.
Martin
,
E.
Meiburg
, and
P.
Linden
, “
The non-Boussinesq lock-exchange problem. Part 2. High-resolution simulations
,”
J. Fluid Mech.
537
,
125
144
(
2005
).
7.
V.
Birman
,
B.
Battandier
,
E.
Meiburg
, and
P.
Linden
, “
Lock-exchange flows in sloping channels
,”
J. Fluid Mech.
577
,
53
77
(
2007
).
8.
H. R. C.
Pratt
and
M. H. I.
Baird
, “
Axial dispersion
,” in
Handbook of Solvent Extraction
(
Wiley
,
New York
,
1983
), p. 199.
9.
W.
Chantry
,
R.
Berg
, and
H.
Wiegandt
, “
Application of pulsation to liquid-liquid extraction
,”
Ind. Eng. Chem.
47
(
6
),
1153
1159
(
1955
).
10.
D.
Ruthven
and
C.
Ching
, “
Counter-current and simulated counter-current adsorption separation processes
,”
Chem. Eng. Sci.
44
(
5
),
1011
1038
(
1989
).
11.
P.
Schweitzer
,
Handbook of Separation Techniques for Chemical Engineers
(
McGraw-Hill
,
New York
,
1988
).
12.
F.
Señoráns
,
A.
Ruiz–Rodrıguez
,
E.
Ibañez
,
J.
Tabera
, and
G.
Reglero
, “
Optimization of countercurrent supercritical fluid extraction conditions for spirits fractionation
,”
J. Supercrit. Fluids
21
(
1
),
41
49
(
2001
).
13.
M.
Raventós
,
S.
Duarte
, and
R.
Alarcón
, “
Application and possibilities of supercritical CO2 extraction in food processing industry: An overview
,”
Food Sci. Technol. Int.
8
(
5
),
269
284
(
2002
).
14.
S.
Birajdar
,
S.
Rajagopalan
,
J.
Sawant
, and
S.
Padmanabhan
, “
Continuous countercurrent liquid–liquid extraction method for the separation of 2, 3-butanediol from fermentation broth using n-butanol and phosphate salt
,”
Process Biochem.
50
(
9
),
1449
1458
(
2015
).
15.
R.
Rao
,
M.
Talluri
,
T.
Krishna
, and
K.
Ravindranath
, “
Continuous counter current extraction, isolation and determination of solanesol in Nicotiana tobacum L. by non-aqueous reversed phase high performance liquid chromatography
,”
J. Pharm. Biomed. Anal.
46
(
2
),
310
315
(
2008
).
16.
T.
Cunha
and
R.
Aires-Barros
, “
Large-scale extraction of proteins
,”
Mol. Biotechnol.
20
(
1
),
29
40
(
2002
).
17.
M.
Baird
,
K.
Aravamudan
,
N.
Rao
,
J.
Chadam
, and
A.
Peirce
, “
Unsteady axial mixing by natural convection in vertical column
,”
AIChE J.
38
,
1825
(
1992
).
18.
O.
Levenspiel
,
Chemical Engineering Reaction
(
Wiley-Eastern Limited
,
New York
,
1972
).
19.
E.
Nelson
and
D.
Guillot
,
Well Cementing
, 2nd ed. (
Schlumberger Educational Services
,
2006
).
20.
L.
Craig
and
O.
Post
, “
Apparatus for countercurrent distribution
,”
Anal. Chem.
21
(
4
),
500
504
(
1949
).
21.
Y.
Ito
and
R.
Bowman
, “
Angle rotor countercurrent chromatography
,”
Anal. Biochem.
65
(
1
),
310
320
(
1975
).
22.
Y.
Ito
and
R.
Bhatnagar
, “
Improved scheme for preparative countercurrent chromatography (CCC) with a rotating coil assembly
,”
J. Liq. Chromatogr.
7
(
2
),
257
273
(
1984
).
23.
Y.
Ito
and
W. D.
Conway
, “
High-speed countercurrent chromatography
,”
Crit. Rev. Anal. Chem.
17
(
1
),
65
143
(
1986
).
24.
M.
Debacq
,
V.
Fanguet
,
J.
Hulin
,
D.
Salin
, and
B.
Perrin
, “
Self similar concentration profiles in buoyant mixing of miscible fluids in a vertical tube
,”
Phys. Fluids
13
,
3097
3100
(
2001
).
25.
M.
Debacq
,
J.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E.
Hinch
, “
Buoyant mixing of miscible fluids of varying viscosities in vertical tube
,”
Phys. Fluids
15
,
3846
3855
(
2003
).
26.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E.
Hinch
, “
Buoyant mixing of miscible fluids in tilted tubes
,”
Phys. Fluids
16
,
L103
L106
(
2004
).
27.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E.
Hinch
, “
Buoyancy driven miscible front dynamics in tilted tubes
,”
Phys. Fluids
17
,
031702-1
031702-4
(
2005
).
28.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E.
Hinch
, “
Laser-induced fluorescence measurements of buoyancy driven mixing in tilted tubes
,”
Phys. Fluids
18
,
041701-1
041701-4
(
2006
).
29.
T.
Seon
,
J.
Znaien
,
D.
Salin
,
J.-P.
Hulin
,
E.
Hinch
, and
B.
Perrin
, “
Front dynamics and macroscopic diffusion in buoyant mixing in a tilted tube
,”
Phys. Fluids
19
,
125105-1
125105-7
(
2007
).
30.
J.
Znaien
,
Y.
Hallez
,
F.
Moisy
,
J.
Magnaudet
,
J.
Hulin
,
D.
Salin
, and
E.
Hinch
, “
Experimental and numerical investigations of flow structure and momentum transport in a turbulent buoyancy-driven flow inside a tilted tube
,”
Phys. Fluids
21
(
11
),
115102-1
115102-10
(
2009
).
31.
J.
Znaien
,
F.
Moisy
, and
J.-P.
Hulin
, “
Flow structure and momentum transport for buoyancy driven mixing flows in long tubes at different tilt angles
,”
Phys. Fluids
23
,
035105-1
035105-14
(
2011
).
32.
Y.
Hallez
and
J.
Magnaudet
, “
Effects of channel geometry on buoyancy-driven mixing
,”
Phys. Fluids
20
,
053306-1
053306-9
(
2008
).
33.
Y.
Hallez
and
J.
Magnaudet
, “
A numerical investigation of horizontal viscous gravity currents
,”
J. Fluid Mech.
630
,
71
91
(
2009
).
34.
Y.
Hallez
and
J.
Magnaudet
, “
Turbulence-induced secondary motion in a buoyancy-driven flow in a circular pipe
,”
Phys. Fluids
21
,
081704-1
081704-4
(
2009
).
35.
K.
Sahu
and
S.
Vanka
, “
A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel
,”
Comput. Fluids
50
(
1
),
199
215
(
2011
).
36.
P.
Redapangu
,
S.
Vanka
, and
K.
Sahu
, “
Multiphase lattice Boltzmann simulations of buoyancy-induced flow of two immiscible fluids with different viscosities
,”
Eur. J. Mech.- B Fluids
34
,
105
114
(
2012
).
37.
Y.
Hallez
and
J.
Magnaudet
, “
Buoyancy-induced turbulence in a tilted pipe
,”
J. Fluid Mech.
762
,
435
477
(
2015
).
38.
F.
Sebilleau
,
R.
Issa
, and
S.
Walker
, “
Analysis of turbulence modelling approaches to simulate single-phase buoyancy driven counter-current flow in a tilted tube
,”
Flow, Turbul. Combust.
96
,
95
132
(
2016
).
39.
T.
Seon
,
J.
Znaien
,
D.
Salin
,
J.-P.
Hulin
,
E.
Hinch
, and
B.
Perrin
, “
Transient buoyancy-driven front dynamics in nearly horizontal tubes
,”
Phys. Fluids
19
,
123603-1
123603-11
(
2007
).
40.
R.
Kerswell
, “
Exchange flow of two immiscible fluids and the principle of maximum flux
,”
J. Fluid Mech.
682
,
132
159
(
2011
).
41.
Z.
Borden
,
E.
Meiburg
, and
G.
Constantinescu
, “
Internal bores: An improved model via a detailed analysis of the energy budget
,”
J. Fluid Mech.
703
,
279
314
(
2012
).
42.
Z.
Borden
and
E.
Meiburg
, “
Circulation-based models for Boussinesq internal bores
,”
J. Fluid Mech.
726
,
R1
(
2013
).
43.
A.
Wakale
,
K.
Venkatasubbaiah
, and
K.
Sahu
, “
A parametric study of buoyancy-driven flow of two-immiscible fluids in a differentially heated inclined channel
,”
Comput. Fluids
117
,
54
61
(
2015
).
44.
S.
Thorpe
, “
A method of producing a shear flow in a stratified fluid
,”
J. Fluid Mech.
32
,
693
704
(
1968
).
45.
S.
Thorpe
, “
Experiments on instability and turbulence in a stratified shear flow
,”
J. Fluid Mech.
61
,
731
751
(
1973
).
46.
O.
Reynolds
, “
An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels
,”
Proc. R. Soc. London
35
,
84
99
(
1883
).
47.
R.
Zhang
,
X.
He
,
G.
Doolen
, and
S.
Chen
, “
Surface tension effects on two-dimensional two-phase Kelvin–Helmholtz instabilities
,”
Adv. Water Resour.
24
(
3
),
461
478
(
2001
).
48.
H.
Yoshikawa
and
J.
Wesfreid
, “
Oscillatory Kelvin–Helmholtz instability. Part 2. An experiment in fluids with a large viscosity contrast
,”
J. Fluid Mech.
675
,
249
267
(
2011
).
49.
S.
Dalziel
,
P.
Linden
, and
D.
Youngs
, “
Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability
,”
J. Fluid Mech.
399
,
1
48
(
1999
).
50.
S.
Dalziel
,
M.
Patterson
,
C.
Caulfield
, and
I.
Coomaraswamy
, “
Mixing efficiency in high-aspect-ratio Rayleigh-Taylor experiments
,”
Phys. Fluids
20
,
065106-1
065106-14
(
2008
).
51.
G.
Batchelor
and
J.
Nitsche
, “
Instability of stationary unbounded stratified fluid
,”
J. Fluid Mech.
227
,
357
391
(
1991
).
52.
Y.
Couder
,
N.
Gerard
, and
M.
Rabaud
, “
Narrow fingers in the Saffman-Taylor instability
,”
Phys. Rev. A
34
(
6
),
5175
5180
(
1986
).
53.
P.
Tabeling
,
G.
Zocchi
, and
A.
Libchaber
, “
An experimental study of the Saffman-Taylor instability
,”
J. Fluid Mech.
177
,
67
82
(
1987
).
54.
G.
Homsy
, “
Viscous fingering in porous media
,”
Ann. Rev. Fluid Mech.
19
(
1
),
271
311
(
1987
).
55.
R.
Govindarajan
and
K.
Sahu
, “
Instabilities in viscosity-stratified flow
,”
Annu. Rev. Fluid Mech.
46
,
331
353
(
2014
).
56.
E.
Siggia
, “
High Rayleigh number convection
,”
Annu. Rev. Fluid Mech.
26
(
1
),
137
168
(
1994
).
57.
D.
Nield
and
A.
Bejan
,
Convection in Porous Media
(
Springer Science & Business Media
,
2006
).
58.
M.
Gibert
,
H.
Pabiou
,
F.
Chillà
, and
B.
Castaing
, “
High-Rayleigh-number convection in a vertical channel
,”
Phys. Rev. Lett.
96
(
8
),
084501
(
2006
).
59.
M.
Gibert
,
H.
Pabiou
,
J.
Tisserand
,
B.
Gertjerenken
,
B.
Castaing
, and
F.
Chillà
, “
Heat convection in a vertical channel: Plumes versus turbulent diffusion
,”
Phys. Fluids
21
(
3
),
035109-1
035109-11
(
2009
).
60.
J.
Tisserand
,
M.
Creyssels
,
M.
Gibert
,
B.
Castaing
, and
F.
Chillà
, “
Convection in a vertical channel
,”
New J. Phys.
12
(
7
),
075024-1
075024-21
(
2010
).
61.
X.
Riedinger
,
J.
Tisserand
,
F.
Seychelles
,
B.
Castaing
, and
F.
Chillà
, “
Heat transport regimes in an inclined channel
,”
Phys. Fluids
25
(
1
),
015117-1
015117-15
(
2013
).
62.
J.
Salort
,
X.
Riedinger
,
E.
Rusaouen
,
J.
Tisserand
,
F.
Seychelles
,
B.
Castaing
, and
F.
Chillà
, “
Turbulent velocity profiles in a tilted heat pipe
,”
Phys. Fluids
25
(
10
),
105110-1
105110-16
(
2013
).
63.
E.
Rusaouen
,
X.
Riedinger
,
J.
Tisserand
,
F.
Seychelles
,
J.
Salort
,
B.
Castaing
, and
F.
Chillà
, “
Laminar and intermittent flow in a tilted heat pipe
,”
Eur. Phys. J. E
37
(
1
),
4-1
4-8
(
2014
).
64.
P.
Le Quéré
, “
Accurate solutions to the square thermally driven cavity at high Rayleigh number
,”
Comput. Fluids
20
(
1
),
29
41
(
1991
).
65.
A.
Bejan
,
Convection Heat Transfer
(
John Wiley & Sons
,
2013
).
66.
O.
Singh
and
J.
Srinivasan
, “
Effect of Rayleigh numbers on the evolution of double-diffusive salt fingers
,”
Phys. Fluids
26
(
6
),
062104-1
062104-18
(
2014
).
67.
H.
Huppert
and
R.
Sparks
, “
Double-diffusive convection due to crystallization in magmas
,”
Annu. Rev. Earth Planet. Sci.
12
,
11
37
(
1984
).
68.
O.
Singh
,
D.
Ranjan
,
J.
Srinivasan
, and
K.
Sreenivas
, “
A study of basalt fingers using experiments and numerical simulations in double-diffusive systems
,”
J. Geogr. Geol.
3
(
1
),
42
50
(
2011
).
69.
J.
Leconte
and
G.
Chabrier
, “
A new vision of giant planet interiors: Impact of double diffusive convection
,”
Astron. Astrophys.
540
,
A20-1
A20-13
(
2012
).
70.
M.
Mishra
,
A.
De Wit
, and
K.
Sahu
, “
Double diffusive effects on pressure-driven miscible displacement flows in a channel
,”
J. Fluid Mech.
712
,
579
597
(
2012
).
71.
J.
Azaiez
and
M.
Sajjadi
, “
Stability of double-diffusive double-convective miscible displacements in porous media
,”
Phys. Rev. E
85
(
2
),
026306-1
026306-10
(
2012
).
72.
M.
Sajjadi
and
J.
Azaiez
, “
Dynamics of fluid flow and heat transfer in homogeneous porous media
,”
Can. J. Chem. Eng.
91
(
4
),
687
697
(
2013
).
73.
J.
Turner
and
H.
Stommel
, “
A new case of convection in the presence of combined vertical salinity and temperature gradients
,”
Proc. Natl. Acad. Sci. U. S. A.
52
(
1
),
49
53
(
1964
).
74.
M.
Stern
, “
Collective instability of salt fingers
,”
J. Fluid Mech.
35
(
02
),
209
218
(
1969
).
75.
J.
Holyer
, “
The stability of long, steady, two-dimensional salt fingers
,”
J. Fluid Mech.
147
,
169
185
(
1984
).
76.
E.
Kunze
, “
Limits on growing, finite-length salt fingers: A Richardson number constraint
,”
J. Mar. Res.
45
(
3
),
533
556
(
1987
).
77.
R.
Schmitt
, “
Double diffusion in oceanography
,”
Ann. Rev. Fluid Mech.
26
(
1
),
255
285
(
1994
).
78.
W.
Merryfield
, “
Origin of thermohaline staircases
,”
J. Phys. Oceanogr.
30
(
5
),
1046
1068
(
2000
).
79.
T.
Radko
, “
A mechanism for layer formation in a double-diffusive fluid
,”
J. Fluid Mech.
497
,
365
380
(
2003
).
80.
B.
Ruddick
and
O.
Kerr
, “
Oceanic thermohaline intrusions: Theory
,”
Prog. Oceanogr.
56
(
3
),
483
497
(
2003
).
81.
K.
Sreenivas
,
O.
Singh
, and
J.
Srinivasan
, “
On the relationship between finger width, velocity, and fluxes in thermohaline convection
,”
Phys. Fluids
21
(
2
),
026601-1
026601-15
(
2009
).
82.
S.
Stellmach
,
A.
Traxler
,
P.
Garaud
,
N.
Brummell
, and
T.
Radko
, “
Dynamics of fingering convection. Part 2 the formation of thermohaline staircases
,”
J. Fluid Mech.
677
,
554
571
(
2011
).
83.
J.
Lee
,
M.
Hyun
, and
K.
Kim
, “
Natural convection in confined fluids with combined horizontal temperature and concentration gradients
,”
Int. J. Heat Mass Transfer
31
(
10
),
1969
1977
(
1988
).
84.
H.
Han
and
T.
Kuehn
, “
Double diffusive natural convection in a vertical rectangular enclosure—I. Experimental study
,”
Int. J. Heat Mass Transfer
34
(
2
),
449
459
(
1991
).
85.
H.
Han
and
T.
Kuehn
, “
Double diffusive natural convection in a vertical rectangular enclosure—II. Numerical study
,”
Int. J. Heat Mass Transfer
34
(
2
),
461
471
(
1991
).
86.
C.
Beghein
,
F.
Haghighat
, and
F.
Allard
, “
Numerical study of double-diffusive natural convection in a square cavity
,”
Int. J. Heat Mass Transfer
35
(
4
),
833
846
(
1992
).
87.
A.
Mohamad
,
R.
Bennacer
, and
J.
Azaiez
, “
Double diffusion natural convection in a rectangular enclosure filled with binary fluid saturated porous media: The effect of lateral aspect ratio
,”
Phys. Fluids
16
(
1
),
184
199
(
2004
).
88.
M.
Corcione
,
S.
Grignaffini
, and
A.
Quintino
, “
Correlations for the double-diffusive natural convection in square enclosures induced by opposite temperature and concentration gradients
,”
Int. J. Heat Mass Transfer
81
,
811
819
(
2015
).
89.
J.
Koster
and
K.
Nguyen
, “
Steady natural convection in a double layer of immiscible liquids with density inversion
,”
Int. J. Heat Mass Transfer
39
(
3
),
467
478
(
1996
).
90.
K.
Sahu
and
O.
Matar
, “
Stability of plane channel flow with viscous heating
,”
J. Fluids Eng.
132
(
1
),
011202-1
011202-7
(
2010
).
91.
D. G.
Friend
,
E. W.
Lemmon
, and
M. O.
McLinden
,
Thermophysical Properties of Fluid Systems
(
NIST
,
Gaithersburg, MD
,
1997
).
92.
Glycerine Producers’ Association
,
Physical Properties of Glycerine and Its Solutions
(
Glycerine Producers’ Association
,
1963
).
93.
L. C.
Burmeister
,
Convective Heat Transfer
(
John Wiley & Sons
,
1993
).
94.
G.
Egorov
and
A.
Kolker
, “
The thermal properties of water-n, n-dimethylformamide solutions at 278–323.15 K and 0.1–100 MPa
,”
Russ. J. Phys. Chem. A
82
(
12
),
2058
2064
(
2008
).
95.
I.
Blazhnov
,
N.
Malomuzh
, and
S.
Lishchuk
, “
Temperature dependence of density, thermal expansion coefficient and shear viscosity of supercooled glycerol as a reflection of its structure
,”
J. Chem. Phys.
121
(
13
),
6435
6441
(
2004
).
96.
G.
D’Errico
,
O.
Ortona
,
F.
Capuano
, and
V.
Vitagliano
, “
Diffusion coefficients for the binary system glycerol + water at 25 °C. A velocity correlation study
,”
J. Chem. Eng. Data
49
(
6
),
1665
1670
(
2004
).
97.
J.
Verhoeven
, “
Experimental study of thermal convection in a vertical cylinder of mercury heated from below
,”
Phys. Fluids
12
(
9
),
1733
1740
(
1969
).
98.
D. D.
Gray
and
A.
Giorgini
, “
The validity of the Boussinesq approximation for liquids and gases
,”
Int. J. Heat Mass Transfer
19
(
5
),
545
551
(
1976
).
99.
K.
Alba
,
S.
Taghavi
, and
I.
Frigaard
, “
Miscible density-unstable displacement flows in inclined tube
,”
Phys. Fluids
25
,
067101-1
067101-21
(
2013
).
100.
M.
Cantero
,
J.
Lee
,
S.
Balachandar
, and
M.
Garcia
, “
On the front velocity of gravity currents
,”
J. Fluid Mech.
586
,
1
(
2007
).
101.
K.
Alba
,
S.
Taghavi
, and
I.
Frigaard
, “
Miscible density-stable displacement flows in inclined tube
,”
Phys. Fluids
24
,
123102-1
123102-11
(
2012
).
102.
A.
Boycott
, “
Sedimentation of blood corpuscles
,”
Nature
104
,
532
(
1920
).
103.
P.
Frick
,
R.
Khalilov
,
I.
Kolesnichenko
,
A.
Mamykin
,
V.
Pakholkov
,
A.
Pavlinov
, and
S.
Rogozhkin
, “
Turbulent convective heat transfer in a long cylinder with liquid sodium
,”
Europhys. Lett.
109
(
1
),
14002-1
14002-6
(
2015
).
104.
A.
Vasilíev
,
I.
Kolesnichenko
,
A.
Mamykin
,
P.
Frick
,
R.
Khalilov
,
S.
Rogozhkin
, and
V.
Pakholkov
, “
Turbulent convective heat transfer in an inclined tube filled with sodium
,”
Tech. Phys.
60
(
9
),
1305
1309
(
2015
).
105.
K.
Sahu
,
H.
Ding
, and
O.
Matar
, “
Numerical simulation of non-isothermal pressure-driven miscible channel flow with viscous heating
,”
Chem. Eng. Sci.
65
(
10
),
3260
3267
(
2010
).
106.
B.
Brunone
and
A.
Berni
, “
Wall shear stress in transient turbulent pipe flow by local velocity measurement
,”
J. Hydraul. Eng.
136
,
716
726
(
2010
).
107.
S.
Taghavi
,
K.
Alba
,
M.
Moyers-Gonzalez
, and
I.
Frigaard
, “
Incomplete fluid-fluid displacement of yield stress fluids in near-horizontal pipes: Experiments and theory
,”
J. Non-Newtonian Fluid Mech.
167-168
,
59
74
(
2012
).
108.
S.
Taghavi
,
K.
Alba
,
T.
Seon
,
K.
Wielage-Burchard
,
D.
Martinez
, and
I.
Frigaard
, “
Miscible displacement flows in near-horizontal ducts at low Atwood number
,”
J. Fluid Mech.
696
,
175
214
(
2012
).
109.
S.
Taghavi
,
T.
Seon
,
D.
Martinez
, and
I.
Frigaard
, “
Buoyancy-dominated displacement flows in near-horizontal channels: The viscous limit
,”
J. Fluid Mech.
639
,
1
35
(
2009
).
110.
K.
Alba
,
S.
Taghavi
, and
I.
Frigaard
, “
A weighted residual method for two-layer non-Newtonian channel flows: Steady-state results and their stability
,”
J. Fluid Mech.
731
,
509
544
(
2013
).
You do not currently have access to this content.