The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by 10% at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.

1.
R. W.
Lemke
,
M. D.
Knudson
,
C. A.
Hall
,
T. A.
Haill
,
P. M.
Desjarlais
,
J. R.
Asay
, and
T. A.
Mehlhorn
, “
Characterization of magnetically accelerated flyer plates
,”
Phys. Plasmas
10
(
4
),
1092
1099
(
2003
).
2.
M. D.
Knudson
,
R. W.
Lemke
,
D. B.
Hayes
,
C. A.
Hall
,
C.
Deeney
, and
J. R.
Asay
, “
Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique
,”
J. Appl. Phys.
94
(
7
),
4420
(
2003
).
3.
M. D.
Knudson
,
D. L.
Hanson
,
J.
Bailey
,
C. A.
Hall
, and
J.
Asay
, “
Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa
,”
Phys. Rev. Lett.
90
(
3
),
035505
(
2003
).
4.
T. G.
Leighton
and
R. O.
Cleveland
, “
Lithotripsy
,”
Proc. Inst. Mech. Eng., Part H
224
,
317
342
(
2010
).
5.
C.-J.
Wang
, “
An overview of shock wave therapy in musculoskeletal disorders
,”
Chang Gung Med. J.
26
(
4
),
220
232
(
2003
).
6.
J. P.
Dear
and
J. E.
Field
, “
A study of the collapse of arrays of cavities
,”
J. Fluid Mech.
190
,
409
425
(
1988
).
7.
N. K.
Bourne
, “
On the collapse of cavities
,”
Shock Waves
11
(
6
),
447
455
(
2002
).
8.
J. E.
Field
,
M. B.
Lesser
, and
J. P.
Dear
, “
Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems
,”
Proc. R. Soc. A
401
(
1821
),
225
249
(
1985
).
9.
J. P.
Dear
and
J. E.
Field
, “
High-speed photography of surface geometry effects in liquid/solid impact
,”
J. Appl. Phys.
63
(
4
),
1015
(
1988
).
10.
J. E.
Field
,
J. P.
Dear
, and
J. E.
Ogren
, “
The effects of target compliance on liquid drop impact
,”
J. Appl. Phys.
65
(
2
),
533
(
1989
).
11.
J. P.
Dear
,
J. E.
Field
, and
A. J.
Walton
, “
Gas compression and jet formation in cavities collapsed by a shock wave
,”
Nature
332
,
505
508
(
1988
).
12.
M.
Yokoo
,
N.
Kawai
,
Y.
Hironaka
,
K. G.
Nakamura
, and
K. I.
Kondo
, “
Diagnostic system to measure spatial and temporal profiles of shock front using compact two-stage light-gas gun and line reflection method
,”
Rev. Sci. Instrum.
78
(
4
),
043904
(
2007
).
13.
M. D.
Knudson
,
D. L.
Hanson
,
J. E.
Bailey
,
C. A.
Hall
,
J. R.
Asay
, and
C.
Deeney
, “
Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques
,”
Phys. Rev. B
69
(
14
),
144209
(
2004
).
14.
H.
Kleine
,
K.
Hiraki
,
H.
Maruyama
,
T.
Hayashida
,
J.
Yonai
,
K.
Kitamura
,
Y.
Kondo
, and
T. G.
Etoh
, “
High-speed time-resolved color schlieren visualization of shock wave phenomena
,”
Shock Waves
14
(
5-6
),
333
341
(
2005
).
15.
L. M.
Barker
and
R. E.
Hollenbach
, “
Laser interferometer for measuring high velocities of any reflecting surface
,”
J. Appl. Phys.
43
(
11
),
4669
4675
(
1972
).
16.
J. B. R.
Winters
,
S. N.
Bland
,
S. J. P.
Stafford
,
D. J.
Chapman
, and
D. E.
Eakins
, “
VISAR ‘cross-hairs’: Simultaneous perpendicular line-imaging VISAR
,”
J. Phys.: Conf. Ser.
500
(
18
),
182044
(
2014
)..
17.
Ya. B.
Zel’dovich
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Courier Corporation
,
2002
).
18.
R.
Paul Drake
,
High Energy Density Physics
(
Springer-Verlag
,
Berlin, Heidelberg
,
2006
).
19.
J.
Staudenraus
and
W.
Eisenmenger
, “
Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water
,”
Ultrasonics
31
(
4
),
267
273
(
1993
).
20.
J. E.
Parsons
,
C. A.
Cain
, and
J. B.
Fowlkes
, “
Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields
,”
J. Acoust. Soc. Am.
119
(
3
),
1432
1440
(
2006
).
21.
A.
Arvengas
,
K.
Davitt
, and
F.
Caupin
, “
Fiber optic probe hydrophone for the study of acoustic cavitation in water
,”
Rev. Sci. Instrum.
82
(
3
),
034904
(
2011
).
22.
J. H.
Gladstone
and
T. P.
Dale
, “
Researches on the refraction, dispersion, and sensitiveness of liquids
,”
Proc. R. Soc. London
12
,
448
453
(
1862
).
23.
H. S.
Yadav
, “
Measurement of refractive index of water under high dynamic pressures
,”
J. Appl. Phys.
44
(
5
),
2197
(
1973
).
24.
L.
Davison
and
R. A.
Graham
, “
Shock compression of solids
,”
Phys. Rep.
55
(
4
),
255
379
(
1979
).
25.
D. T.
Blackstock
,
Fundamentals of Physical Acoustics
(
John Wiley & Sons, Inc.
,
2000
).
26.
N. A.
Hawker
and
Y.
Ventikos
, “
Interaction of a strong shockwave with a gas bubble in a liquid medium: A numerical study
,”
J. Fluid Mech.
701
,
59
97
(
2012
).
27.
M. R.
Betney
,
N. A.
Hawker
,
B.
Tully
, and
Y.
Ventikos
, “
Computational modelling of the interaction of shock waves with multiple gas bubbles in a liquid
,”
Phys. Fluids
27
,
036101
(
2015
).
You do not currently have access to this content.