Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves’ asymmetry is retrieved from the computed skewness of the surface slope components.

1.
H.
Socquet-Juglard
,
K.
Dysthe
,
K.
Trulsen
,
H. E.
Krogstad
, and
J.
Liu
, “
Probability distributions of surface gravity waves during spectral changes
,”
J. Fluid Mech.
542
,
195
(
2005
).
2.
M.
Onorato
,
A. R.
Osborne
,
M.
Serio
, and
L.
Cavaleri
, “
Modulational instability and non-Gaussian statistics in experimental random water-wave trains
,”
Phys. Fluids
17
,
078101
(
2005
).
3.
K. B.
Dysthe
,
K.
Trulsen
,
H. E.
Krogstad
, and
H.
Socquet-Juglard
, “
Evolution of a narrow-band spectrum of random surface waves
,”
J. Fluid Mech.
478
,
1
10
(
2003
).
4.
N.
Mori
,
M.
Onorato
,
P. A. E. M.
Janssen
,
A. R.
Osborne
, and
M.
Serio
, “
On the extreme statistics of long-crested deep water waves: Theory and experiments
,”
J. Geophys. Res.
112
,
C09011
, doi:10.1029/2006jc004024 (
2007
).
5.
L.
Shemer
and
A.
Sergeeva
, “
An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield
,”
J. Geophys. Res.
114
,
C01015
, doi:10.1029/2008jc005077 (
2009
).
6.
L.
Shemer
,
A.
Sergeeva
, and
A.
Slunyaev
, “
Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: Experimental validation
,”
Phys. Fluids
22
,
016601
(
2010
).
7.
L.
Shemer
,
A.
Sergeeva
, and
D.
Liberzon
, “
Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves
,”
J. Geophys. Res.
115
,
C12039
, doi:10.1029/2010jc006326 (
2010
).
8.
M.
Onorato
,
M. L.
Cavaleri
,
S.
Fouques
,
O.
Gramstad
,
P. A. E. M.
Janssen
,
J.
Monbaliu
, and
A.
Toffoli
, “
Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a three-dimensional wave basin
,”
J. Fluid Mech.
627
,
235
(
2009
).
9.
M.
Longuet-Higgins
, “
On the statistical distribution of the heights of sea waves
,”
J. Mar. Res.
11
,
245
(
1952
).
10.
G. Z.
Forristall
, “
On the statistical distribution of wave heights in a storm
,”
J. Geophys. Res.
83
,
2353
, doi:10.1029/jc083ic05p02353 (
1978
).
11.
H.
Mitsuyasu
, “
On the growth of the spectrum of windgenerated waves I
,”
Rep. Res. Inst. Appl. Mech. (Kyushu Univ.)
16
,
459
(
1968
).
12.
H.
Mitsuyasu
and
T.
Honda
, “
The high frequency spectrum of wind-generated waves
,”
J. Oceanogr.
30
,
185
(
1974
).
13.
J.
Wu
, “
Effects of long waves on wind boundary layer and on ripple slope statistics
,”
J. Geophys. Res.
82
,
1359
, doi:10.1029/jc082i009p01359 (
1977
).
14.
N. E.
Huang
and
S. R.
Long
, “
An experimental study of the surface elevation probability distribution and statistics of wind-generated waves
,”
J. Fluid Mech.
101
,
179
(
1980
).
15.
G.
Caulliez
and
C.-A.
Guérin
, “
Higher-order statistical analysis of short wind wave fields
,”
J. Geophys. Res.
117
,
C06002
, doi:10.1029/2011JC007854 (
2012
).
16.
D.
Liberzon
and
L.
Shemer
, “
Experimental study of the initial stages of wind waves’ spatial evolution
,”
J. Fluid Mech.
681
,
462
(
2011
).
17.
A.
Zavadsky
,
D.
Liberzon
, and
L.
Shemer
, “
Statistical analysis of the spatial evolution of the stationary wind wave field
,”
J. Phys. Oceanogr.
43
,
65
(
2013
).
18.
A.
Zavadsky
,
A.
Benetazzo
, and
L.
Shemer
, “
On the two-dimensional structure of short gravity waves in a wind wave tank
,”
Phys. Fluids
29
,
016601
(
2017
).
19.
A. M.
Reece
, “
Modulation of short waves by long waves
,”
Boundary Layer Meteorol.
13
,
203
(
1978
).
20.
S. J.
Miller
,
O. H.
Shemdin
, and
M. S.
Longuet-Higgins
, “
Laboratory measurements of modulation of short-wave slopes by long surface waves
,”
J. Fluid Mech.
233
,
389
(
1991
).
21.
A. V.
Fedorov
,
W. K.
Melville
, and
A.
Rozenberg
, “
An experimental and numerical study of parasitic capillary waves
,”
Phys. Fluids
10
,
1315
(
1998
).
22.
P. A.
Lange
,
B.
Jähne
,
J.
Tschiersch
, and
I.
Ilmberg
, “
Comparison between an amplitude-measuring wire and a slope-measuring laser water wave gauge
,”
Rev. Sci. Instrum.
53
,
651
(
1982
).
23.
E.
Sanker
, M.Sc. thesis,
Tel-Aviv University
,
2012
.
24.
A.
Zavadsky
and
L.
Shemer
, “
Characterization of turbulent airflow over evolving water-waves in a wind-wave tank
,”
J. Geophys. Res.: Oceans
117
,
C00J19
, doi:10.1029/2011JC007790 (
2012
).
25.
V. E.
Zakharov
and
N. N.
Filonenko
, “
Weak turbulence of capillary waves
,”
J. Appl. Mech. Tech. Phys.
8
,
37
(
1967
).
26.
V. E.
Zakharov
and
N. N.
Filonenko
, “
Energy spectrum for stochastic oscillations of the surface of a liquid
,”
Sov. Phys. Dokl.
11
,
881
(
1967
).
27.
O. M.
Phillips
, “
On the dynamics of unsteady gravity waves of finite amplitude Part II. Local properties of a random wave field
,”
J. Fluid Mech.
11
,
143
(
1961
).
28.
B.
Kinsman
,
Surface Waves at Short Fetches and Low Wind Speeds: A Field Study
(
Chesapeake Bay Institute, Johns Hopkins University
,
1960
).
29.
M. A.
Srokosz
and
M. S.
Longuet-Higgins
, “
On the skewness of sea-surface elevation
,”
J. Fluid Mech.
164
,
487
(
1986
).
30.
C.
Cox
and
W.
Munk
,
Slopes of the Sea Surface Deduced from Photographs of Sun Glitter
(
Scripps Institution of Oceanography
,
1956
).
31.
A. V.
Babanin
,
D.
Chalikov
,
I. R.
Young
, and
I.
Savelyev
, “
Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water
,”
J. Fluid Mech.
644
,
433
(
2010
).
32.
M. S.
Longuet-Higgins
, “
On the skewness of sea-surface slopes
,”
J. Phys. Oceanogr.
12
,
1283
(
1982
).
33.
S.
Elgar
, “
Relationships involving third moments and bispectra of a harmonic process
,”
IEEE Trans. Acoust., Speech, Signal Process.
35
,
1725
(
1987
).
34.
S.
Elgar
and
R. T.
Guza
, “
Observations of bispectra of shoaling surface gravity waves
,”
J. Fluid Mech.
161
,
425
(
1985
).
35.
I. A.
Leykin
,
M. A.
Donelan
,
R. H.
Mellen
, and
D. J.
McLaughlin
, “
Asymmetry of wind waves studied in a laboratory tank
,”
Nonlinear Processes Geophys.
2
,
280
(
1995
).
36.
M. A.
Tayfun
, “
Narrow-band nonlinear sea waves
,”
J. Geophys. Res.
85
(
C3
),
1548
, doi:10.1029/jc085ic03p01548 (
1980
).
37.
M. A.
Tayfun
and
F.
Fedele
, “
Wave-height distributions and nonlinear effects
,”
Ocean Eng.
34
,
1631
(
2007
).
You do not currently have access to this content.