The present work investigates numerically the statistics of the wall shear stress fluctuations in a turbulent boundary layer (TBL) and their relation to the velocity fluctuations outside of the near-wall region. The flow data are obtained from a Direct Numerical Simulation (DNS) of a zero pressure-gradient TBL using the high-order flow solver Incompact3D [S. Laizet and E. Lamballais, “High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy,” J. Comput. Phys. 228(16), 5989 (2009)]. The maximum Reynolds number of the simulation is Re𝜃2000, based on the free-stream velocity and the momentum thickness of the boundary layer. The simulation data suggest that the root-mean-squared fluctuations of the streamwise and spanwise wall shear-stress components τx and τz follow a logarithmic dependence on the Reynolds number, consistent with the empirical correlation of Örlü and Schlatter [R. Örlü and P. Schlatter, “On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows,” Phys. Fluids 23, 021704 (2011)]. These functional dependencies can be used to estimate the Reynolds number dependence of the wall turbulence dissipation rate in good agreement with reference DNS data. Our results suggest that the rare negative events of τx can be associated with the extreme values of τz and are related to the presence of coherent structures in the buffer layer, mainly quasi-streamwise vortices. We also develop a theoretical model, based on a generalisation of the Townsend-Perry hypothesis of wall-attached eddies, to link the statistical moments of the filtered wall shear stress fluctuations and the second order structure function of fluctuating velocities at a distance y from the wall. This model suggests that the wall shear stress fluctuations may induce a higher slope in the turbulence energy spectra of streamwise velocities than the one predicted by the Townsend-Perry attached-eddy model.

1.
Abe
,
H.
,
Kawamura
,
H.
, and
Choi
,
H.
, “
Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Reτ = 640
,”
J. Fluids Eng.
126
(
5
),
835
843
(
2004
).
2.
Alfredsson
,
P. H.
,
Johansson
,
A. V.
,
Haritonidis
,
J. H.
, and
Eckelmann
,
H.
, “
The fluctuating wall-shear stress and the velocity field in the viscous sublayer
,”
Phys. Fluids
31
(
5
),
1026
1033
(
1988
).
3.
Alfredsson
,
P. H.
,
Örlü
,
R.
, and
Schlatter
,
P.
, “
The viscous sublayer revisited–exploiting self-similarity to determine the wall position and friction velocity
,”
Exp. Fluids
51
(
1
),
271
280
(
2011
).
4.
Brücker
,
C.
, “
Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging
,”
Phys. Fluids
27
(
3
),
031705
(
2015
).
5.
Chambers
,
F. W.
,
Murphy
,
H. D.
, and
Mceligot
,
D. M.
, “
Laterally converging flow. Part 2. Temporal wall shear stress
,”
J. Fluid Mech.
127
,
403
428
(
1983
).
6.
Chauhan
,
K. A.
,
Monkewitz
,
P. A.
, and
Nagib
,
H. M.
, “
Criteria for assessing experiments in zero pressure gradient boundary layers
,”
Fluid Dyn. Res.
41
,
021404
(
2009
).
7.
Choi
,
H.
and
Moin
,
P.
, “
On the space-time characteristics of wall-pressure fluctuations
,”
Phys. Fluids A
2
,
1450
(
1990
).
8.
Colella
,
K.
and
Keith
,
W. L.
, “
Measurements and scaling of wall shear stress fluctuations
,”
Exp. Fluids
34
,
253
(
2003
).
9.
de Giovanetti
,
M.
,
Hwang
,
Y.
, and
Choi
,
H.
, “
Skin-friction generation by attached eddies in turbulent channel flow
,”
J. Fluid Mech.
808
,
511
538
(
2016
).
10.
Del Alamo
,
J. C.
, and
Jimenez
,
J.
, “
Estimation of turbulent convection velocities and corrections to Taylor’s approximation
,”
J. Fluid Mech.
640
,
5
(
2009
).
11.
Eckelmann
,
H.
, “
The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow
,”
J. Fluid Mech.
65
(
3
),
439
459
(
1974
).
12.
Fischer
,
M.
,
Jovanović
,
J.
, and
Durst
,
F.
, “
Reynolds number effects in the near-wall region of turbulent channel flows
,”
Phys. Fluids
13
(
6
),
1755
1767
(
2001
).
13.
Grosse
,
S.
and
Schroder
,
W.
, “
High Reynolds number turbulent wind tunnel boundary layer wall-shear stress sensor
,”
J. Turbul.
10
,
N14
(
2009
).
14.
Hoyas
,
S.
and
Jimenez
,
J.
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
(
1
),
011702
(
2006
).
15.
Hu
,
Z. W.
,
Morfey
,
C. L.
, and
Sandham
,
N. D.
, “
Wall pressure and shear stress spectra from direct numerical simulations of channel flow up to Re = 1440
,”
AAIA J.
44
(
7
),
1541
1549
(
2006
).
16.
Hutchins
,
N.
and
Marusic
,
I.
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc., A
365
(
1852
),
647
664
(
2007
).
17.
Hwang
,
Y.
, “
Statistical structure of self-sustaining attached eddies in turbulent channel flow
,”
J. Fluid Mech.
767
,
254
289
(
2015
).
18.
Jeon
,
S.
,
Choi
,
H.
,
Yoo
,
J. Y.
, and
Moin
,
P.
, “
Space-time characteristics of the wall shear-stress fluctuations in a low-Reynolds number channel flow
,”
Phys. Fluids
11
,
3084
(
1999
).
19.
Jeong
,
J.
and
Hussain
,
F.
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
20.
Jiménez
,
J.
, “
Cascades in wall-bounded turbulence
,”
Annu. Rev. Fluid Mech.
44
(
1
),
27
(
2011
).
21.
Jimenez
,
J.
,
Hoyas
,
S.
,
Simens
,
M. P.
, and
Mizuno
,
Y.
, “
Turbulent boundary layers and channels at moderate Reynolds numbers
,”
J. Fluid Mech.
657
,
335
360
(
2010
).
22.
Karlsson
,
R. I.
and
Johansson
,
T.
, “
LDV measurements of higher order moments of velocity fluctuations in a turbulent boundary layer
,” in Laser Anemometry in Fluid Mechanics III, edited by
Adrian
,
R. J.
, et al
. (Ladoan-Instituto Superior Tecnico, Portugal, 1988), pp. 273–289.
23.
Kolmogorov
,
A. N.
, “
A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number
,”
J. Fluid Mech.
13
(
01
),
82
85
(
1962
).
24.
Laizet
,
S.
and
Lamballais
,
E.
, “
High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy
,”
J. Comput. Phys.
228
(
16
),
5989
6015
(
2009
).
25.
Lenaers
,
P.
,
Li
,
Q.
,
Brethouwer
,
G.
,
Schlatter
,
P.
, and
Örlü
,
R.
, “
Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence
,”
Phys. Fluids
24
,
035110
(
2012
).
26.
Lin
,
C.
, “
On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equations
,”
Q. Appl. Math.
10
(
4
),
295
306
(
1953
).
27.
Lumley
,
J.
, “
Interpretation of time spectra measured in high-intensity shear flows
,”
Phys. Fluids
8
(
6
),
1056
1062
(
1965
).
28.
Madavan
,
N. K.
,
Deutsch
,
S.
, and
Merkle
,
C. L.
, “
Measurements of local skin friction in a microbubble-modified turbulent boundary layer
,”
J. Fluid Mech.
156
,
237
256
(
1985
).
29.
Marusic
,
I.
and
Heuer
,
W. D. C.
, “
Reynolds number invariance of the structure inclination angle in wall turbulence
,”
Phys. Rev. Lett.
99
,
114504
(
2007
).
30.
Marusic
,
I.
,
Mathis
,
R.
, and
Hutchins
,
N.
, “
A wall-shear stress predictive model
,”
J. Phys.: Conf. Ser.
318
,
012003
(
2011
).
31.
Mathis
,
R.
,
Marusic
,
I.
,
Chernyshenko
,
S. I.
, and
Hutchins
,
N.
, “
Estimating wall-shear-stress fluctuations given an outer region input
,”
J. Fluid Mech.
715
,
163
180
(
2013
).
32.
Miyagi
,
N.
,
Kimura
,
M.
,
Shoji
,
H.
,
Saima
,
A.
,
Ho
,
C.-M.
,
Tung
,
S.
, and
Tai
,
Y.-C.
, “
Statistical analysis on wall shear stress of turbulent boundary layer in a channel flow using micro-shear stress imager
,”
Int. J. Heat Fluid Flow
21
,
576
(
2000
).
33.
Nagib
,
H. M.
,
Chauhan
,
K. A.
, and
Monkewitz
,
P. A.
, “
Approach to an asymptotic state for zero pressure gradient turbulent boundary layers
,”
Philos. Trans. R. Soc., A
365
,
755
770
(
2007
).
34.
Örlü
,
R.
and
Schlatter
,
P.
, “
On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows
,”
Phys. Fluids
23
,
021704
(
2011
).
35.
Perry
,
A. E.
,
Henbest
,
S.
, and
Chong
,
M. S.
, “
A theoretical and experimental study in wall turbulence
,”
J. Fluid Mech.
165
,
163
199
(
1986
).
36.
Pope
,
S.
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
37.
Schlatter
,
P.
and
Örlü
,
R.
, “
Assessment of direct numerical simulation data of turbulent boundary layers
,”
J. Fluid Mech.
659
,
116
126
(
2010
).
38.
Schlatter
,
P.
and
Örlü
,
R.
, “
Turbulent boundary layers at moderate Reynolds numbers: Inflow length and tripping effects
,”
J. Fluid Mech.
710
,
5
34
(
2012
).
39.
Sheng
,
J.
,
Malkiel
,
E.
, and
Katz
,
J.
, “
Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer
,”
Exp. Fluids
45
(
6
),
1023
1035
(
2008
).
40.
Sillero
,
J. A.
,
Jimenez
,
J.
, and
Moser
,
R. D.
, “
One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ ≈ 2000
,”
Phys. Fluids
25
,
105102
(
2013
).
41.
Srinath
,
S.
,
Vassilicos
,
J. C.
,
Cuvier
,
C.
,
Laval
,
J.-P.
,
Stanislas
,
M.
, and
Foucaut
,
J.-M.
, “
An attached flow structure model for streamwise energy spectra in a turbulent boundary layer,
J. Fluid Mech.
(submitted).
42.
Taylor
,
G. I.
, “
The spectrum of turbulence
,”
Proc. R. Soc. A
164
,
476
490
(
1938
).
43.
Townsend
,
A. A.
,
The Structure of Turbulent Shear Flow
(
Cambridge University Press
,
Cambridge
,
1976
).
44.
Vassilicos
,
J. C.
,
Laval
,
J. P.
,
Foucaut
,
J. M.
, and
Stanislas
,
M.
, “
The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow
,”
J. Fluid Mech.
774
,
324
341
(
2015
).
45.
Vinuesa
,
R.
,
Örlü
,
R.
, and
Schlatter
,
P.
, “
Characterisation of backflow events over a wing section
,”
J. Turbul.
18
(
2
),
170
185
(
2017
).
46.
Wietrzak
,
A.
and
Lueptow
,
R. M.
, “
Wall shear stress and velocity in a turbulent axisymmetric boundary layer
,”
J. Fluid Mech.
259
,
191
218
(
1994
).
You do not currently have access to this content.