Transition processes in supersonic streamwise vortices with wake flows are numerically simulated for Mach numbers from 1.5 to 5.0. This paper discusses the effect of an axial velocity deficit on the breakdown for a fixed small swirl number. For the evolution of the linear unstable mode at Mach 2.5, although the linear-growth range is short, the eigenfunction profiles of the mode resolved from a numerical simulation are generally consistent with those obtained from the linear stability analysis. For the discovery of the supersonic vortex breakdown, when the deficits are large within Mach number 2.5, spiral breakdowns occur with the azimuthal wavenumber |m| = 1. This suggests that there might be a correlation between the breakdown and absolute instability not only in subsonic but also in supersonic flows. As a means of determining when this breakdown will occur, this study proves under the condition of compressible flows that such a spiral breakdown occurs where the integrated enstrophy in a plane perpendicular to the axial flow is close to a maximum in the streamwise variation. Ultimately, this study found that the axial velocity on the vortex axis increases in shock-free supersonic vortex breakdowns; thus, there is no stagnation point and the breakdown configuration is only of a spiral type. The features for this breakdown are quite different from those of subsonic breakdowns, as they only depend on the swirl intensity.

1.
N. C.
Lambourne
and
D. W.
Bryer
, “
The bursting of leading-edge vortices–Some observations and discussion of the phenomenon
,” Aeronautical Research Council Reports and Memoranda No. 3282,
1961
.
2.
J. M.
Delery
, “
Aspects of vortex breakdown
,”
Prog. Aerosp. Sci.
30
,
1
(
1994
).
3.
R. C.
Nelson
and
A.
Pelletier
, “
The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers
,”
Prog. Aerosp. Sci.
39
,
185
(
2003
).
4.
D. H.
Peckham
and
S. A.
Atkinson
, “
Preliminary results of low speed wind tunnel tests on a gothic wing of aspect ratio 1.0
,” Aeronautical Research Council Technical Report No. 508,
1957
.
5.
M.
Escudier
, “
Vortex breakdown: Observations and explanations
,”
Prog. Aerosp. Sci.
25
,
189
(
1988
).
6.
S.
Leibovich
, “
The structure of vortex breakdown
,”
Annu. Rev. Fluid Mech.
10
,
221
(
1978
).
7.
M. G.
Hall
, “
Vortex breakdown
,”
Annu. Rev. Fluid Mech.
4
,
195
(
1972
).
8.
H.
Ludwieg
, “
Stabilitat der Stromung in einem zylindrischen Ringraum
,”
Z. Flugwiss.
8
,
135
(
1960
).
9.
T. B.
Benjamin
, “
Theory of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
593
(
1962
).
10.
M. R.
Ruith
,
P.
Chen
,
E.
Meiburg
, and
T.
Maxworthy
, “
Three-dimensional vortex breakdown in swirling jets and wakes: Direct numerical simulation
,”
J. Fluid Mech.
486
,
331
(
2003
).
11.
I.
Delbende
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Absolute/convective instabilities in the Batchelor vortex: A numerical study of the linear impulse response
,”
J. Fluid Mech.
355
,
229
(
1998
).
12.
C.
Olendraru
,
A.
Sellier
,
M.
Rossi
, and
P.
Huerre
, “
Inviscid instability of the Batchelor vortex: Absolute-convective transition and spatial branches
,”
Phys. Fluids
11
,
1805
(
1999
).
13.
F.
Gallaire
,
M.
Ruith
,
E.
Meiburg
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Spiral vortex breakdown as a global mode
,”
J. Fluid Mech.
549
,
71
(
2006
).
14.
P.
Meliga
,
F.
Gallaire
, and
J.-M.
Chomaz
, “
A weakly nonlinear mechanism for mode selection in swirling jets
,”
J. Fluid Mech.
699
,
216
(
2012
).
15.
U. A.
Qadri
,
D.
Mistry
, and
M. P.
Juniper
, “
Structural sensitivity of spiral vortex breakdown
,”
J. Fluid Mech.
720
,
558
(
2013
).
16.
M. R.
Visbal
and
R. E.
Gordnier
, “
Compressibility effects on vortex breakdown onset above a 75-degree sweep delta wing
,”
J. Aircr.
32
,
936
(
1995
).
17.
R.
Melville
, “
The role of compressibility in free vortex breakdown
,” AIAA Paper No. 96–2075,
1996
.
18.
M. A.
Herrada
,
M.
Pérez-Saborid
, and
A.
Barrero
, “
Vortex breakdown in compressible flows in pipes
,”
Phys. Fluids
15
,
2208
(
2003
).
19.
Z.
Rusak
and
J. H.
Lee
, “
The effect of compressibility on the critical swirl of vortex flows in a pipe
,”
J. Fluid Mech.
461
,
301
(
2002
).
20.
Z.
Rusak
,
J. J.
Choi
,
N.
Bourquard
, and
S.
Wang
, “
Vortex breakdown of compressible subsonic swirling flows in a finite-length straight circular pipe
,”
J. Fluid Mech.
781
,
3
(
2015
).
21.
T.
Luginsland
and
L.
Kleiser
,
Mach Number Influence on Vortex Breakdown in Compressible, Subsonic Swirling Nozzle-Jet Flows
(
Springer International Publishing
,
Cham
,
2015
), pp.
311
317
.
22.
I. M.
Kalkhoran
and
M. K.
Smart
, “
Aspects of shock wave-induced vortex breakdown
,”
Prog. Aerosp. Sci.
36
,
63
(
2000
).
23.
T.
Hiejima
, “
Criterion for vortex breakdown on shock wave and streamwise vortex interactions
,”
Phys. Rev. E
89
,
053017
(
2014
).
24.
T.
Hiejima
, “
Spatial evolution of supersonic streamwise vortices
,”
Phys. Fluids
26
,
074102
(
2014
).
25.
T.
Hiejima
, “
A factor involved in efficient breakdown of supersonic streamwise vortices
,”
Phys. Fluids
27
,
034103
(
2015
).
26.
T.
Hiejima
, “
Stability of compressible streamwise vortices
,”
Phys. Fluids
27
,
074107
(
2015
).
27.
F.
Marques
and
J. M.
Lopez
, “
Precessing vortex breakdown mode in an enclosed cylinder flow
,”
Phys. Fluids
13
,
1679
(
2001
).
28.
G. K.
Batchelor
, “
Axial flow in trailing line vortices
,”
J. Fluid Mech.
20
,
645
(
1964
).
29.
T.
Hiejima
, “
Linear stability analysis on supersonic streamwise vortices
,”
Phys. Fluids
25
,
114103
(
2013
).
30.
Y.
Wada
and
M.-S.
Liou
, “
A flux splitting scheme with high-resolution and robustness for discontinues
,” AIAA Paper No. 94–0083,
1994
.
31.
R.
Borges
,
M.
Carmona
,
B.
Costa
, and
W. S.
Don
, “
An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws
,”
J. Comput. Phys.
227
,
3191
(
2008
).
32.
A.
Jameson
,
W.
Schmidt
, and
E.
Turkel
, “
Numerical simulation of the Euler equations by finite volume method using Runge–Kutta time stepping schemes
,” AIAA Paper No. 81–1259,
1981
.
33.
T. T.
Lim
and
Y. D.
Cui
, “
On the generation of a spiral-type vortex breakdown in an enclosed cylindrical container
,”
Phys. Fluids
17
,
044105
(
2005
).
34.
B.
Di Pierro
and
M.
Abid
, “
Energy spectra in a helical vortex breakdown
,”
Phys. Fluids
23
,
025104
(
2011
).
35.
T.
Hiejima
, “
Effects of streamwise vortex breakdown on supersonic combustion
,”
Phys. Rev. E
93
,
043115
(
2016
).
36.
H.
Liang
and
T.
Maxworthy
, “
An experimental investigation of swirling jets
,”
J. Fluid Mech.
525
,
115
(
2005
).
37.
L. M.
Mack
, “
Boundary layer stability theory
,” JPL Report No. 900–277,
1969
.
38.
A.
Hanifi
,
P. J.
Schmid
, and
D. S.
Henningson
, “
Transient growth in compressible boundary layer flow
,”
Phys. Fluids
8
,
826
(
1996
).
You do not currently have access to this content.