The dynamics of the Rayleigh-Taylor instability of a two-dimensional thin liquid film placed on the underside of a planar substrate subjected to either normal or tangential harmonic forcing is investigated here in the framework of a set of long-wave evolution equations accounting for inertial effects derived earlier by Bestehorn, Han, and Oron [“Nonlinear pattern formation in thin liquid films under external vibrations,” Phys. Rev. E 88, 023025 (2013)]. In the case of tangential vibration, the linear stability analysis of the time-periodic base state with a flat interface shows the existence of the domain of wavenumbers where the film is unstable. In the case of normal vibration, the linear stability analysis of the quiescent base state reveals that the instability threshold of the system is depicted by a combination of distinct thresholds separate for the Rayleigh-Taylor and Faraday instabilities. The nonlinear dynamics of the film interface in the case of the static substrate results in film rupture. However, in the presence of the substrate vibration in the lateral direction, the film interface saturates in certain domains in the parameter space via the mechanism of advection induced by forcing, so that the continuity of the film interface is preserved even in the domains of linear instability while undergoing the time-periodic harmonic evolution. On the other hand, sufficiently strong forcing introduces a new inertial mode of rupture. In the case of the normal vibration, the film evolution may exhibit time-periodic, harmonic or subharmonic saturated waves apart of rupture. The enhancement of the frequency or amplitude of the substrate forcing promotes the destabilization of the system and a tendency to film rupture at the nonlinear stage of its evolution. A possibility of saturation of the Rayleigh-Taylor instability by either normal or unidirectional tangential forcing in three dimensions is also demonstrated.

1.
Lord Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-14
,
170
(
1882
).
2.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (part I)
,”
Proc. R. Soc. A
201
,
192
(
1950
).
3.
D. J.
Lewis
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (part II)
,”
Proc. R. Soc. A
202
,
81
(
1950
).
4.
D. H.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Phys. D
12
,
3
(
1984
).
5.
H. J.
Kull
, “
Theory of the Rayleigh-Taylor instability
,”
Phys. Rep.
206
,
197
(
1991
).
6.
C. C.
Kuranz
,
R. P.
Drake
,
E. C.
Harding
,
M. J.
Grosskopf
,
H. F.
Robey
,
B. A.
Remington
,
M. J.
Edwards
,
A. R.
Miles
,
T. S.
Perry
,
B. E.
Blue
,
T.
Plewa
,
N. C.
Hearn
,
J. P.
Knauer
,
D.
Arnett
, and
D. R.
Leibrandt
, “
Two dimensional blast-wave-driven RayleighTaylor instability: Experiment and simulation
,”
Astrophys. J.
696
,
749
(
2009
).
7.
S.
Miller
and
G.
Kliminz
, “
The role of Rayleigh-Taylor instability in shaped charge jets formation and stability
,” in
22nd International Symposium on Ballistics
,
Canada
,
2005
.
8.
J. M.
Burgess
,
A.
Juel
,
W. D.
McCormick
,
J. B.
Swift
, and
H. L.
Swinney
, “
Suppression of dripping from a ceiling
,”
Phys. Rev. Lett.
86
,
1203
(
2001
).
9.
R.
Seemann
,
S.
Herminghaus
,
C.
Neto
,
S.
Schlagowski
,
D.
Podzimek
,
R.
Konrad
,
H.
Mantz
, and
K.
Jacobs
, “
Dynamics and structure formation in thin polymer melt films
,”
J. Phys.: Condens. Matter
17
,
S267
(
2005
).
10.
F. C.
Haas
, “
Stability of droplets suddenly exposed to a high velocity gas stream
,”
AIChE J.
10
,
920
(
1964
).
11.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices towards lab on a chip
,”
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
12.
H. W.
Emmons
,
C. T.
Chang
, and
B. C.
Watson
, “
Taylor instability of finite surface waves
,”
J. Fluid Mech.
7
,
177
(
1960
).
13.
R. L.
Cole
and
R. S.
Tankin
, “
Experimental study of Taylor instability
,”
Phys. Fluids
16
,
1810
(
1973
).
14.
M.
Fermigier
,
L.
Limat
,
J. E.
Wesfreid
,
P.
Boudinet
, and
C.
Quilliet
, “
Two-dimensional patterns in Rayleigh-Taylor instability of a thin layer
,”
J. Fluid Mech.
236
,
349
(
1992
).
15.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon Press
,
Oxford
,
1961
).
16.
R.
Bellman
and
R. H.
Pennington
, “
Effects of surface tension and viscosity on Taylor instability
,”
Q. Appl. Math.
12
,
151
(
1954
).
17.
G. H.
Wolf
, “
The dynamic stabilization of the Rayleigh-Taylor instability and the corresponding dynamic equilibrium
,”
Z. Phys. A: Hadrons Nucl.
227
,
291
(
1969
).
18.
G. H.
Wolf
, “
Dynamic stabilization of the interchange instability of a liquid-gas interface
,”
Phys. Rev. Lett.
24
,
444
(
1970
).
19.
S. G.
Yiantsios
and
B. G.
Higgins
, “
Rayleigh-Taylor instability in thin viscous films
,”
Phys. Fluids A
1
,
1484
(
1989
).
20.
S. G.
Yiantsios
and
B. G.
Higgins
, “
Rupture of thin films: Nonlinear stability analysis
,”
J. Colloid Interface Sci.
147
,
341
(
1991
).
21.
A.
Oron
and
P.
Rosenau
, “
Formation of patterns induced by thermocapillarity and gravity
,”
J. Phys. II
2
,
131
(
1992
).
22.
P. S.
Hammond
, “
Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe
,”
J. Fluid Mech.
137
,
363
(
1983
).
23.
J. R.
Lister
,
J. M.
Rallison
,
A. A.
King
,
L. J.
Cummings
, and
O. E.
Jensen
, “
Capillary drainage of an annular film: The dynamics of collars and lobes
,”
J. Fluid Mech.
552
,
311
(
2006
).
24.
R. J.
Deissler
and
A.
Oron
, “
Stable localized patterns in thin liquid films
,”
Phys. Rev. Lett.
68
,
2948
(
1992
).
25.
A.
Alexeev
and
A.
Oron
, “
Suppression of the Rayleigh-Taylor instability of thin liquid films by the Marangoni effect
,”
Phys. Fluids
19
,
082101
(
2007
).
26.
P. H.
Trinh
,
H.
Kim
,
N.
Hammoud
,
P. D.
Howell
,
S. J.
Chapman
, and
H. A.
Stone
, “
Curvature suppresses the Rayleigh-Taylor instability
,”
Phys. Fluids
26
,
051704
(
2014
).
27.
A. J.
Babchin
,
A. L.
Frenkel
,
B. G.
Levich
, and
G. I.
Sivashinsky
, “
Nonlinear saturation of RayleighTaylor instability in thin films
,”
Phys. Fluids
26
,
3159
(
1983
).
28.
T.-S.
Lin
,
L.
Kondic
, and
A.
Filippov
, “
Thin films flowing down inverted substrates: Three-dimensional flow
,”
Phys. Fluids
24
,
022105
(
2012
).
29.
W.
Batson
,
Y.
Agnon
, and
A.
Oron
, “
Mass variation of a thin liquid film driven by an acoustic wave
,”
Phys. Fluids
27
,
062106
(
2015
).
30.
W.
Rohlfs
,
P.
Pischke
, and
B.
Scheid
, “
Hydrodynamic waves in films flowing under an inclined plane
,”
Phys. Rev. Fluids
2
,
044003
(
2017
).
31.
P.
Brunet
,
J.
Eggers
, and
R. D.
Deegan
, “
Vibration-induced climbing of drops
,”
Phys. Rev. Lett.
99
,
144501
(
2007
).
32.
X.
Noblin
,
R.
Kofman
, and
F.
Celestini
, “
Ratchet-like motion of a shaken drop
,”
Phys. Rev. Lett.
102
,
194504
(
2009
).
33.
D.
Halpern
and
A. L.
Frenkel
, “
Saturated Rayleigh-Taylor instability of an oscillating Couette film flow
,”
J. Fluid Mech.
446
,
67
(
2001
).
34.
A. A.
Nepomnyashchii
, “
Stability of the wavy regimes in the film flowing down an inclined plane
,”
Fluid Dyn.
9
,
354
(
1974
).
35.
Y.
Kuramoto
and
T.
Tsuzuki
, “
On the formation of dissipative structures in reaction-diffusion systems: Reductive perturbation approach
,”
Prog. Theor. Phys.
54
,
687
(
1975
).
36.
G. I.
Sivashinsky
, “
Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations
,”
Acta Astronaut.
4
,
1177
(
1976
).
37.
I. G.
Kevrekidis
,
B.
Nicolaenko
, and
J. C.
Scovel
, “
Back in the saddle again: A computer assisted study of the Kuramoto-Sivashinsky equation
,”
SIAM J. Appl. Math.
50
,
760
(
1990
).
38.
A. L.
Frenkel
and
D.
Halpern
, “
On saturation of Rayleigh-Taylor instability
,” in
Fluid Mechanics and its Applications
, IUTAM Symposium on Nonlinear Waves in Multi-Phase Flow, edited by
H.-C.
Chang
(
Springer
,
Dordrecht
,
2000
), Vol. 57.
39.
M.
Bestehorn
,
Q.
Han
, and
A.
Oron
, “
Nonlinear pattern formation in thin liquid films under external vibrations
,”
Phys. Rev. E
88
,
023025
(
2013
).
40.
M.
Bestehorn
, “
Laterally extended thin liquid films with inertia under external vibrations
,”
Phys. Fluids
25
,
114106
(
2013
).
41.
N. O.
Rojas
,
M.
Argentina
,
E.
Cerda
, and
E.
Tirapegui
, “
Inertial lubrication theory
,”
Phys. Rev. Lett.
104
,
187801
(
2010
).
42.
D. J.
Benney
, “
Long waves on liquid films
,”
J. Math. Phys.
45
,
150
(
1966
).
43.
B.
Gjevik
, “
Occurrence of finite-amplitude surface waves on falling liquid films
,”
Phys. Fluids
13
,
1918
(
1970
).
44.
G. I.
Sivashinsky
and
D. M.
Michelson
, “
On irregular wavy flow of a liquid film down a vertical plane
,”
Prog. Theor. Phys.
63
,
2112
(
1980
).
45.
O.
Haimovich
and
A.
Oron
, “
Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface
,”
Phys. Fluids
22
,
032101
(
2010
).
46.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
47.
D. W.
Jordan
and
P.
Smith
,
Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems
, 3rd ed. (
Oxford University Press
,
1999
).
48.
A.
Oron
,
O.
Gottlieb
, and
E.
Novbari
, “
Numerical analysis of a weighted-residual integral boundary-layer model for nonlinear dynamics of falling liquid films
,”
Eur. J. Mech., B: Fluids
28
,
1
(
2009
).
49.
M.
Bestehorn
and
A.
Potosky
, “
Faraday instability and nonlinear formation of a two-layer system: A reduced model
,”
Phys. Rev. Fluids
1
,
063905
(
2016
).
You do not currently have access to this content.