We study the buoyant displacement flow of two immiscible Newtonian fluids in an inclined duct (two-dimensional channel) theoretically. The fluids may have different viscosities. The displacing fluid is denser than the displaced one, i.e., a density-unstable configuration. For simplicity, the fluids are assumed to behave as neutrally wetting in the vicinity of duct walls. The small diameter-to-length ratio of the duct considered (δ1) has been used as the perturbation parameter in developing a lubrication model (negligible inertia). Appropriate Navier-slip conditions have been applied at the walls to overcome contact-line problem singularity. The lubrication model developed has then been numerically solved using a robust total variation diminishing finite difference scheme. Completely different flow patterns have been observed compared to the miscible limit. Fluids immiscibility is found to cause a capillary ridge in the vicinity of the displacing front, which diminishes as the surface tension is increased. For small values of surface tension parameter, the fluids immiscibility is found to decelerate the advancement of interpenetrating heavy and light layers. More efficient displacement (less fingering within the displacing layer) has been observed at small density differences and when the displacing fluid is more viscous than the displaced one. The limit of zero imposed velocity corresponding to the exchange flow has further been considered in the lubrication model. An interesting jump in the interface height occurs close to the vicinity of the gate region due to the immiscibility, which has been similarly reported in other recent computational works. Detailed mathematical notes on the similarity solution of the flow at long times are moreover provided. Investigating the short-time dynamics of the flow reveals the dominance of diffusive surface tension effects over buoyancy.

1.
E.
Nelson
and
D.
Guillot
,
Well Cementing
, 2nd ed. (
Schlumberger Educational Services
,
2006
).
2.
K.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
17
(
1
),
65
89
(
1985
).
3.
R.
Valette
,
P.
Laure
,
Y.
Demay
, and
J.
Agassant
, “
Convective linear stability analysis of two-layer coextrusion flow for molten polymers
,”
J. Non-Newtonian Fluid Mech.
121
(
1
),
41
53
(
2004
).
4.
M.
Parvez
,
N.
Ong
,
Y.
Lam
, and
S.
Tor
, “
Gas-assisted injection molding: The effects of process variables and gas channel geometry
,”
J. Mater. Process. Technol.
121
(
1
),
27
35
(
2002
).
5.
P.
Howell
,
S.
Waters
, and
J.
Grotberg
, “
The propagation of a liquid bolus along a liquid-lined flexible tube
,”
J. Fluid Mech.
406
,
309
335
(
2000
).
6.
O.
Wanner
,
H.
Eberl
,
E.
Morgenroth
,
D.
Noguera
,
C.
Picioreanu
,
B.
Rittmann
, and
M.
Van Loosdrecht
,
Mathematical Modeling of Biofilms
, Scientific and Technical Report Series (
IWA
,
2006
), Vol. 18, pp.
1
199
.
7.
D.
Burfoot
,
K.
Middleton
, and
J.
Holah
, “
Removal of biofilms and stubborn soil by pressure washing
,”
Trends Food Sci. Technol.
20
,
S45
S47
(
2009
).
8.
G.
Christian
and
P.
Fryer
, “
The effect of pulsing cleaning chemicals on the cleaning of whey protein deposits
,”
Food Bioprod. Process.
84
,
320
328
(
2006
).
9.
P.
Fryer
,
G.
Christian
, and
W.
Liu
, “
How hygiene happens: Physics and chemistry of cleaning
,”
Int. J. Dairy Technol.
59
(
2
),
76
84
(
2006
).
10.
M.
Regner
,
M.
Henningsson
,
J.
Wiklund
,
K.
Östergren
, and
C.
Trägårdh
, “
Predicting the displacement of yoghurt by water in a pipe using CFD
,”
Chem. Eng. Technol.
30
(
7
),
844
853
(
2007
).
11.
P.
Cole
,
K.
Asteriadou
,
P.
Robbins
,
E.
Owen
,
G.
Montague
, and
P.
Fryer
, “
Comparison of cleaning of toothpaste from surfaces and pilot scale pipework
,”
Food Bioprod. Process.
88
(
4
),
392
400
(
2010
).
12.
B.
Al Khayyat
,
J. A.
Morris
,
K.
Ravi
, and
J.
Faria
, “
Successes in production-liner cementing in oil-based mud: A case study
,” in
SPE/IADC Middle East Drilling Technology Symposium
(
Society of Petroleum Engineers
,
1999
), pp.
193
204
.
13.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E.
Hinch
, “
Buoyant mixing of miscible fluids in tilted tubes
,”
Phys. Fluids
16
,
L103
L106
(
2004
).
14.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E.
Hinch
, “
Buoyancy driven miscible front dynamics in tilted tubes
,”
Phys. Fluids
17
,
031702
(
2005
).
15.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E.
Hinch
, “
Laser-induced fluorescence measurements of buoyancy driven mixing in tilted tubes
,”
Phys. Fluids
18
,
041701
(
2006
).
16.
T.
Seon
,
J.
Znaien
,
D.
Salin
,
J.-P.
Hulin
,
E.
Hinch
, and
B.
Perrin
, “
Front dynamics and macroscopic diffusion in buoyant mixing in a tilted tube
,”
Phys. Fluids
19
,
125105
(
2007
).
17.
S.
Taghavi
,
T.
Seon
,
D.
Martinez
, and
I.
Frigaard
, “
Influence of an imposed flow on the stability of a gravity current in a near horizontal duct
,”
Phys. Fluids
22
,
031702
(
2010
).
18.
S.
Taghavi
,
T.
Seon
,
K.
Wielage-Burchard
,
D.
Martinez
, and
I.
Frigaard
, “
Stationary residual layers in buoyant Newtonian displacement flows
,”
Phys. Fluids
23
,
044105
(
2011
).
19.
K.
Alba
,
S.
Taghavi
, and
I.
Frigaard
, “
Miscible density-unstable displacement flows in inclined tube
,”
Phys. Fluids
25
,
067101
(
2013
).
20.
K.
Alba
,
S.
Taghavi
,
J.
de Bruyn
, and
I.
Frigaard
, “
Incomplete fluid–fluid displacement of yield-stress fluids. Part 2: Highly inclined pipes
,”
J. Non-Newtonian Fluid Mech.
201
,
80
93
(
2013
).
21.
S.
Taghavi
,
K.
Alba
, and
I.
Frigaard
, “
Buoyant miscible displacement flows at moderate viscosity ratios and low Atwood numbers in near-horizontal ducts
,”
Chem. Eng. Sci.
69
,
404
418
(
2012
).
22.
S.
Taghavi
,
K.
Alba
,
M.
Moyers-Gonzalez
, and
I.
Frigaard
, “
Incomplete fluid-fluid displacement of yield stress fluids in near-horizontal pipes: Experiments and theory
,”
J. Non-Newtonian Fluid Mech.
167-168
,
59
74
(
2012
).
23.
S.
Taghavi
,
K.
Alba
,
T.
Seon
,
K.
Wielage-Burchard
,
D.
Martinez
, and
I.
Frigaard
, “
Miscible displacement flows in near-horizontal ducts at low Atwood number
,”
J. Fluid Mech.
696
,
175
214
(
2012
).
24.
K.
Alba
,
S.
Taghavi
, and
I.
Frigaard
, “
Miscible heavy-light displacement flows in an inclined two-dimensional channel: A numerical approach
,”
Phys. Fluids
26
(
12
),
122104
(
2014
).
25.
T.
Seon
,
J.
Znaien
,
D.
Salin
,
J.-P.
Hulin
,
E.
Hinch
, and
B.
Perrin
, “
Transient buoyancy-driven front dynamics in nearly horizontal tubes
,”
Phys. Fluids
19
,
123603
(
2007
).
26.
S.
Taghavi
,
T.
Seon
,
D.
Martinez
, and
I.
Frigaard
, “
Buoyancy-dominated displacement flows in near-horizontal channels: The viscous limit
,”
J. Fluid Mech.
639
,
1
35
(
2009
).
27.
M.
Moyers-Gonzalez
,
K.
Alba
,
S.
Taghavi
, and
I.
Frigaard
, “
A semi-analytical closure approximation for pipe flows of two Herschel-Bulkley fluids with a stratified interface
,”
J. Non-Newtonian Fluid Mech.
193
,
49
67
(
2013
).
28.
K.
Alba
,
S.
Taghavi
, and
I.
Frigaard
, “
A weighted residual method for two-layer non-Newtonian channel flows: Steady-state results and their stability
,”
J. Fluid Mech.
731
,
509
544
(
2013
).
29.
J.
Hulin
,
J.
Znaien
,
L.
Mendonca
,
A.
Sourbier
,
F.
Moisy
,
D.
Salin
, and
E.
Hinch
, “
Buoyancy driven interpenetration of immiscible fluids of different densities in a tilted tube
,” in
APS Division of Fluid Dynamics
(
American Physical Society
,
2008
), Vol. 1.
30.
K.
Sahu
and
S.
Vanka
, “
A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel
,”
Comput. Fluids
50
(
1
),
199
215
(
2011
).
31.
P.
Redapangu
,
S.
Vanka
, and
K.
Sahu
, “
Multiphase lattice Boltzmann simulations of buoyancy-induced flow of two immiscible fluids with different viscosities
,”
Eur. J. Mech.-B Fluids
34
,
105
114
(
2012
).
32.
J.
Martin
,
N.
Rakotomalala
,
L.
Talon
, and
D.
Salin
, “
Viscous lock-exchange in rectangular channels
,”
J. Fluid Mech.
673
,
132
146
(
2011
).
33.
G.
Matson
and
A.
Hogg
, “
Viscous exchange flows
,”
Phys. Fluids
24
(
2
),
023102
(
2012
).
34.
M.
Spaid
and
G.
Homsy
, “
Stability of Newtonian and viscoelastic dynamic contact lines
,”
Phys. Fluids
8
(
2
),
460
478
(
1996
).
35.
V.
Ajaev
, “
Coating flows and contact line models
,” in
Interfacial Fluid Mechanics
(
Springer
,
2012
), pp.
39
69
.
36.
H.
Greenspan
, “
On the motion of a small viscous droplet that wets a surface
,”
J. Fluid Mech.
84
(
01
),
125
143
(
1978
).
37.
A.
Mazouchi
,
C.
Gramlich
, and
G.
Homsy
, “
Time-dependent free surface Stokes flow with a moving contact line. I. Flow over plane surfaces
,”
Phys. Fluids
16
(
5
),
1647
1659
(
2004
).
38.
K.
Yokoi
,
D.
Vadillo
,
J.
Hinch
, and
I.
Hutchings
, “
Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface
,”
Phys. Fluids
21
(
7
),
072102
(
2009
).
39.
A.
Kurganov
and
E.
Tadmor
, “
New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations
,”
J. Comput. Phys.
160
(
1
),
241
282
(
2000
).
40.
E.
Momoniat
,
C.
Harley
, and
E.
Adlem
, “
Numerical investigation of the generalized lubrication equation
,”
Appl. Math. Comput.
217
(
6
),
2631
2638
(
2010
).
41.
Y.
Ha
,
Y.
Kim
, and
T.
Myers
, “
On the numerical solution of a driven thin film equation
,”
J. Comput. Phys.
227
(
15
),
7246
7263
(
2008
).
42.
D.
Von Rosenberg
, “
Methods for the numerical solution of partial differential equations
,”
Mod. Analytic Comput. Methods Sci. Math.
16
,
140
(
1969
).
43.
Z.
Zheng
,
L.
Rongy
, and
H.
Stone
, “
Viscous fluid injection into a confined channel
,”
Phys. Fluids
27
(
6
),
062105
(
2015
).
44.
M.
Eres
,
L.
Schwartz
, and
R.
Roy
, “
Fingering phenomena for driven coating films
,”
Phys. Fluids
12
(
6
),
1278
1295
(
2000
).
You do not currently have access to this content.