The effect of a nonuniform electric field on the electrohydrodynamic motion of a leaky dielectric suspended drop in the presence of background Poiseuille flow is investigated analytically. Considering the nonuniform electric field to be a linear combination of uniform and quadrupole fields, the velocity of a force-free drop positioned at the flow centerline is obtained. The drop velocity is strongly influenced by the surface charge distribution and drop shape. In the Stokes flow limit, we employ an asymptotic method considering weak surface charge convection and small shape deformation. The present study shows the importance of type of nonuniform electric field (converging or diverging in the direction of the Poiseuille flow), strength of the electric field relative to the Poiseuille flow, and material property ratios on the magnitude and direction of drop motion in the presence of flow curvature. In the presence of a nonuniform electric field, the flow curvature can increase or decrease the drop velocity as compared with a uniform flow case. The converging electric field always drives a perfectly conducting drop in the direction of the Poiseuille flow with increased velocity, while the diverging electric field can drive the drop in either direction, depending on the relative strength of the applied electric field. Shape deformation increases the velocity of a perfectly conducting drop in the converging electric field, while shape deformation increases/decreases the velocity magnitude of a perfectly conducting drop in the diverging electric field. The converging electric field always drives a perfectly dielectric drop in the direction of the Poiseuille flow with increased (or decreased) velocity when the drop phase permittivity is greater (or less) than the medium phase permittivity. The diverging electric field can move a perfectly dielectric drop in either direction, depending on the strength of the electric field relative to the Poiseuille flow and drop-to-medium permittivity ratio. Shape deformation increases the velocity magnitude of a perfectly dielectric drop for larger permittivity ratios. For leaky dielectric drops, both surface convection and shape deformation can increase or decrease the drop velocity in nonuniform electric field, depending on the electrohydrodynamic properties of the drop and the suspending medium.

1.
R.
Seemann
,
M.
Brinkmann
,
T.
Pfohl
, and
S.
Herminghaus
, “
Droplet based microfluidics
,”
Rep. Prog. Phys.
75
,
016601
(
2012
).
2.
S.-Y.
Teh
,
R.
Lin
,
L.-H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
,
198
(
2008
).
3.
A.
Huebner
,
S.
Sharma
,
M.
Srisa-Art
,
F.
Hollfelder
,
J. B.
Edel
, and
A. J.
Demello
, “
Microdroplets: A sea of applications?
,”
Lab Chip
8
,
1244
(
2008
).
4.
Y.
Zhu
and
Q.
Fang
, “
Analytical detection techniques for droplet microfluidics—A review
,”
Anal. Chim. Acta
787
,
24
(
2013
).
5.
X.
Casadevall i Solvas
and
A.
DeMello
, “
Droplet microfluidics: Recent developments and future applications
,”
Chem. Commun.
47
,
1936
(
2011
).
6.
C. W.
Shields
,
C. D.
Reyes
, and
G. P.
López
, “
Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation
,”
Lab Chip
15
,
1230
(
2015
).
7.
Y.
Tao
,
A.
Rotem
,
H.
Zhang
,
C. B.
Chang
,
A.
Basu
,
A. O.
Kolawole
,
S. A.
Koehler
,
Y.
Ren
,
J. S.
Lin
,
J. M.
Pipas
,
A. B.
Feldman
,
C. E.
Wobus
, and
D. A.
Weitz
, “
Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics
,”
Lab Chip
15
,
3934
(
2015
).
8.
R.
Pethig
, “
Dielectrophoresis: An assessment of its potential to aid the research and practice of drug discovery and delivery
,”
Adv. Drug Delivery Rev.
65
,
1589
(
2013
).
9.
C. A.
Stan
,
L.
Guglielmini
,
A. K.
Ellerbee
,
D.
Caviezel
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels
,”
Phys. Rev. E
84
,
036302
(
2011
).
10.
B. H.
Lapizco-Encinas
, in
Microfluidics in Detection Science: Lab-on-a-Chip Technologies
(
Royal Society of Chemistry
,
2014
), pp.
192
223
.
11.
K.
Ahn
,
C.
Kerbage
,
T. P.
Hunt
,
R. M.
Westervelt
,
D. R.
Link
, and
D. A.
Weitz
, “
Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices
,”
Appl. Phys. Lett.
88
,
024104
(
2006
).
12.
W. J.
Doak
,
J. P.
Donovan
, and
P. R.
Chiarot
, “
Deflection of continuous droplet streams using high-voltage dielectrophoresis
,”
Exp. Fluids
54
,
1577
(
2013
).
13.
J. Q.
Feng
, “
Dielectrophoresis of a deformable fluid particle in a nonuniform electric field
,”
Phys. Rev. E
54
,
4438
(
1996
).
14.
S. M.
Lee
,
D. J.
Im
, and
I. S.
Kang
, “
Circulating flows inside a drop under time-periodic nonuniform electric fields
,”
Phys. Fluids
12
,
1899
(
2000
).
15.
D. J.
Im
and
I. S.
Kang
, “
Electrohydrodynamics of a drop under nonaxisymmetric electric fields
,”
J. Colloid Interface Sci.
266
,
127
(
2003
).
16.
J. G.
Kim
,
D. J.
Im
,
Y. M.
Jung
, and
I. S.
Kang
, “
Deformation and motion of a charged conducting drop in a dielectric liquid under a nonuniform electric field
,”
J. Colloid Interface Sci.
310
,
599
(
2007
).
17.
S.
Mandal
,
A.
Bandopadhyay
, and
S.
Chakraborty
, “
Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop
,”
Phys. Rev. E
93
,
043127
(
2016
).
18.
S.
Mandal
,
A.
Bandopadhyay
, and
S.
Chakraborty
, “
Dielectrophoresis of a surfactant-laden viscous drop
,”
Phys. Fluids
28
,
062006
(
2016
).
19.
S.
Mandal
and
S.
Chakraborty
, “
Influence of interfacial viscosity on the dielectrophoresis of drops
,”
Phys. Fluids
29
,
052002
(
2017
).
20.
S.
Mandal
,
A.
Bandopadhyay
, and
S.
Chakraborty
, “
The effect of surface charge convection and shape deformation on the settling velocity of drops in nonuniform electric field
,”
Phys. Fluids
29
,
012101
(
2017
).
21.
S.
Mandal
,
A.
Bandopadhyay
, and
S.
Chakraborty
, “
The effect of uniform electric field on the cross-stream migration of a drop in plane Poiseuille flow
,”
J. Fluid Mech.
809
,
726
(
2016
).
22.
G.
Taylor
, “
Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field
,”
Proc. R. Soc. A
291
,
159
(
1966
).
23.
J. R.
Melcher
,
G. I.
Taylor
,
T. R.
Melcher
, and
G. I.
Taylor
, “
Electrohydrodynamics: A review of the role of interfacial shear stresses
,”
Annu. Rev. Fluid Mech.
1
,
111
(
1969
).
24.
D. A.
Saville
, “
Electrohydrodynamics: The Taylor-Melcher leaky dielectric model
,”
Annu. Rev. Fluid Mech.
29
,
27
(
1997
).
25.
X.
Xu
and
G. M.
Homsy
, “
The settling velocity and shape distortion of drops in a uniform electric field
,”
J. Fluid Mech.
564
,
395
(
2006
).
26.
A.
Bandopadhyay
,
S.
Mandal
,
N. K.
Kishore
, and
S.
Chakraborty
, “
Uniform electric-field-induced lateral migration of a sedimenting drop
,”
J. Fluid Mech.
792
,
553
(
2016
).
27.
L. G.
Leal
,
Advanced Transport Phenomena
(
Cambridge University Press
,
Cambridge
,
2007
).
28.
D.
Das
and
D.
Saintillan
, “
A nonlinear small-deformation theory for transient droplet electrohydrodynamics
,”
J. Fluid Mech.
810
,
225
(
2016
).
29.
E.
Yariv
and
Y.
Almog
, “
The effect of surface-charge convection on the settling velocity of spherical drops in a uniform electric field
,”
J. Fluid Mech.
797
,
536
(
2016
).
30.
S.
Haber
and
G.
Hetsroni
, “
The dynamics of a deformable drop suspended in an unbounded Stokes flow
,”
J. Fluid Mech.
49
,
257
(
1971
).
31.
S.
Mhatre
and
R. M.
Thaokar
, “
Drop motion, deformation, and cyclic motion in a non-uniform electric field in the viscous limit
,”
Phys. Fluids
25
,
072105
(
2013
).
32.
S. D.
Deshmukh
and
R. M.
Thaokar
, “
Deformation, breakup and motion of a perfect dielectric drop in a quadrupole electric field
,”
Phys. Fluids
24
,
032105
(
2012
).
33.
S. D.
Deshmukh
and
R. M.
Thaokar
, “
Deformation and breakup of a leaky dielectric drop in a quadrupole electric field
,”
J. Fluid Mech.
731
,
713
(
2013
).

Supplementary Material

You do not currently have access to this content.