We report an experimental and theoretical study of the motion of metallic micro- and nanoparticles in cryogenic superfluid helium in the presence of a static electric field. Depending on the polarity of the applied field, the system is charged with a large number of positive ions or free electrons. For the electrons, we observe the formation of a negative charge layer above the free surface of liquid He and a shuttle-like motion of metallic particles between this layer and the positively charged bottom electrode. For the positive ions, the positive space charge is created in the liquid and the particle motion resembles bouncing off the (negatively charged) bottom electrode. The observations are explained by a theoretical model based on classical electrostatics and hydrodynamics.

1.
T.
Zhang
and
S. W.
Van Sciver
, “
Large-scale turbulent flow around a cylinder in counterflow superfluid 4He (He (ii))
,”
Nat. Phys.
1
,
36
(
2005
).
2.
S. W.
Van Sciver
,
S.
Fuzier
, and
T.
Xu
, “
Particle image velocimetry studies of counterflow heat transport in superfluid helium ii
,”
J. Low Temp. Phys.
148
,
225
(
2007
).
3.
D. P.
Meichle
and
D. P.
Lathrop
, “
Nanoparticle dispersion in superfluid helium
,”
Rev. Sci. Instrum.
85
,
073705
(
2014
).
4.
M. S.
Paoletti
,
M. E.
Fisher
,
K. R.
Sreenivasan
, and
D. P.
Lathrop
, “
Velocity statistics distinguish quantum turbulence from classical turbulence
,”
Phys. Rev. Lett.
101
,
154501
(
2008
).
5.
M. La
Mantia
and
L.
Skrbek
, “
Quantum turbulence visualized by particle dynamics
,”
Phys. Rev. B
90
,
014519
(
2014
).
6.
D.
Duda
,
M. La
Mantia
,
M.
Rotter
, and
L.
Skrbek
, “
On the visualization of thermal counterflow of He ii past a circular cylinder
,”
J. Low Temp. Phys.
175
,
331
(
2014
).
7.
Y.
Mineda
,
M.
Tsubota
,
Y. A.
Sergeev
,
C. F.
Barenghi
, and
W. F.
Vinen
, “
Velocity distributions of tracer particles in thermal counterflow in superfluid 4He
,”
Phys. Rev. B
87
,
174508
(
2013
).
8.
T. V.
Chagovets
and
S. W.
Van Sciver
, “
Visualization of He ii forced flow around a cylinder
,”
Phys. Fluids
27
,
045111
(
2015
).
9.
T.
Xu
and
S. W.
Van Sciver
, “
Particle image velocimetry measurements of the velocity profile in He ii forced flow
,”
Phys. Fluids
19
,
071703
(
2007
).
10.
E.
Fonda
,
K. R.
Sreenivasan
, and
D. P.
Lathrop
, “
Sub-micron solid air tracers for quantum vortices and liquid helium flows
,”
Rev. Sci. Instrum.
87
,
025106
(
2016
).
11.
G. P.
Bewley
,
D. P.
Lathrop
, and
K. R.
Sreenivasan
, “
Superfluid helium: Visualization of quantized vortices
,”
Nature
441
,
588
(
2006
).
12.
G. P.
Bewley
and
K. R.
Sreenivasan
, “
The decay of a quantized vortex ring and the influence of tracer particles
,”
J. Low Temp. Phys.
156
,
84
(
2009
).
13.
E. B.
Gordon
,
R.
Nishida
,
R.
Nomura
, and
Y.
Okuda
, “
Filament formation by impurities embedding into superfluid helium
,”
JETP Lett.
85
,
581
(
2007
).
14.
P.
Moroshkin
,
V.
Lebedev
,
B.
Grobety
,
C.
Neururer
,
E. B.
Gordon
, and
A.
Weis
, “
Nanowire formation by gold nano-fragment coalescence on quantized vortices in He ii
,”
Europhys. Lett.
90
,
34002
(
2010
).
15.
E. B.
Gordon
,
A. V.
Karabulin
,
V. I.
Matyushenko
,
V. D.
Sizov
, and
I. I.
Khodos
, “
The electrical conductivity of bundles of superconducting nanowires produced by laser ablation of metals in superfluid helium
,”
Appl. Phys. Lett.
101
,
052605
(
2012
).
16.
S.
Okamoto
,
K.
Inaba
,
T.
Iida
,
H.
Ishihara
,
S.
Ichikawa
, and
M.
Ashida
, “
Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials
,”
Sci. Rep.
4
,
5186
(
2014
).
17.
Y.
Takahashi
,
J.
Suzuki
,
N.
Yoneyama
,
Y.
Tokawa
,
N.
Suzuki
,
F.
Matsushima
,
M.
Kumakura
,
M.
Ashida
, and
Y.
Moriwaki
, “
Magnetic trapping of superconducting submicron particles produced by laser ablation in superfluid helium
,”
Appl. Phys. Express
10
,
022701
(
2017
).
18.
L. F.
Gomez
,
E.
Loginov
, and
A. F.
Vilesov
, “
Traces of vortices in superfluid helium droplets
,”
Phys. Rev. Lett.
108
,
155302
(
2012
).
19.
P.
Thaler
,
A.
Volk
,
F.
Lackner
,
J.
Steurer
,
D.
Knez
,
W.
Grogger
,
F.
Hofer
, and
W. E.
Ernst
, “
Formation of bimetallic core-shell nanowires along vortices in superfluid He nanodroplets
,”
Phys. Rev. B
90
,
155442
(
2014
).
20.
E.
Latimer
,
D.
Spence
,
C.
Feng
,
A.
Boatwright
,
A. M.
Ellis
, and
S.
Yang
, “
Preparation of ultrathin nanowires using superfluid helium droplets
,”
Nano Lett.
14
,
2902
(
2014
).
21.
P.
Moroshkin
,
R.
Batulin
,
P.
Leiderer
, and
K.
Kono
, “
Metallic nanowires and mesoscopic networks on a free surface of superfluid helium and charge-shuttling across the liquid–gas interface
,”
Phys. Chem. Chem. Phys.
18
,
26444
(
2016
).
22.
C. A.
Cartier
,
A. M.
Drews
, and
K. J. M.
Bishop
, “
Microfluidic mixing of nonpolar liquids by contact charge electrophoresis
,”
Lab Chip
14
,
4230
(
2014
).
23.
K.
Gloos
,
W.
Schoepe
,
J. T.
Simola
, and
J. T.
Tuoriniemi
, “
Microsphere viscometers for low temperature applications
,”
Cryogenics
32
,
791
(
1992
).
24.
A.
Khayari
and
A. T.
Perez
, “
Charge acquired by a spherical ball bouncing on an electrode: Comparison between theory and experiment
,”
IEEE Trans. Dielectr. Electr. Insul.
9
,
589
(
2002
).
25.
L.
Dascalescu
,
R.
Tobazeon
, and
P.
Atten
, “
Behaviour of conducting particles in corona-dominated electric fields
,”
J. Phys. D: Appl. Phys.
28
,
1611
(
1995
).
26.
L.
Dascalescu
,
M.
Mihailescu
, and
R.
Tobazeon
, “
Modeling of conductive particle behavior in insulating fluids affected by DC electric fields
,”
IEEE Trans. Ind. Appl.
34
,
66
(
1998
).
27.
L.
Dascalescu
,
S.
Das
, and
U.
Kumar
, “
Numerical simulation of conductive particle behaviour at the surface of a plate electrode affected by a DC corona field
,”
J. Electrost.
67
,
167
(
2009
).
28.
P.
Moroshkin
and
K.
Kono
, “
Bound-bound transitions in the emission spectra of Ba+–He excimer
,”
Phys. Rev. A
93
,
052510
(
2016
).
29.
M. W.
Cole
, “
Electronic surface states of liquid helium
,”
Rev. Mod. Phys.
46
,
451
(
1974
).
30.
A.
Fujisaki
,
K.
Sano
,
T.
Kinoshita
,
Y.
Takahashi
, and
T.
Yabuzaki
, “
Implantation of neutral atoms into liquid helium by laser sputtering
,”
Phys. Rev. Lett.
71
,
1039
(
1993
).
31.
E.
Gordon
,
A.
Karabulin
,
V.
Matyushenko
,
V.
Sizov
, and
I.
Khodos
, “
Stability and structure of nanowires grown from silver, copper and their alloys by laser ablation into superfluid helium
,”
Phys. Chem. Chem. Phys.
16
,
25229
(
2014
).
32.
K. W.
Schwarz
, “
Charge-carrier mobilities in liquid helium at the vapor pressure
,”
Phys. Rev. A
6
,
837
(
1972
).
33.
W. I.
Glaberson
and
W. W.
Johnson
, “
Impurity ions in liquid helium
,”
J. Low Temp. Phys.
20
,
313
(
1975
).
34.
M.
Foerste
,
H.
Günther
,
O.
Riediger
,
J.
Wiebe
, and
G.
zu Putlitz
, “
Temperature dependent mobility measurements of alkali-earth ions in superfluid helium (4He)
,”
J. Low Temp. Phys.
110
,
231
(
1998
).
35.
N.
Saito
,
T. M.
Kojima
,
N.
Kobayashi
, and
Y.
Kaneko
, “
Mobilities of He+, Ne+, Ar+, and Kr+ in He gas at 4.35 K
,”
J. Chem. Phys.
100
,
5726
(
1994
).
36.
H.
Tanuma
,
H.
Fujimatsu
, and
N.
Kobayashi
, “
Ion mobility measurements and thermal transpiration effects in helium gas at 4.3 K
,”
J. Chem. Phys.
113
,
1738
(
2000
).
37.
R. A.
Dressler
,
J. P. M.
Beijers
,
H.
Meyer
,
S. M.
Penn
,
V. M.
Bierbaum
, and
S. R.
Leone
, “
Laser probing of ion velocity distributions in drift fields: Parallel and perpendicular temperatures and mobility for Ba+ in He
,”
J. Chem. Phys.
89
,
4707
(
1988
).
38.
M. F.
McGuirk
,
L. A.
Viehland
,
E. P. F.
Lee
,
W. H.
Breckenridge
,
C. D.
Withers
,
A. M.
Gardner
,
R. J.
Plowright
, and
T. G.
Wright
, “
Theoretical study of Ban+–RG (RG = rare gas) complexes and transport of Ban+ through RG (n = 1,2; RG = He–Rn)
,”
J. Chem. Phys.
130
,
194305
(
2009
).
39.
N. J.
Felici
, “
Forces et charges de petits objets en contact avec une electrode affectee d’un champ electrique
,”
Rev. Gen. Electr.
75
,
1145
(
1966
).
40.
Nanoparticle Technology Handbook
, edited by
M.
Hosokawa
,
K.
Nogi
,
M.
Naito
, and
T.
Yokoyama
(
Elsevier
,
2007
).
41.
J. F.
Delon
, “
Theorie de la separation electrostatique a l’aide de l’effet corona
,”
Ann. Mines
3
,
37
(
1966
).
42.
J.
Wilks
,
The Properties of Liquid and Solid Helium
(
Clarendon Press
,
Oxford
,
1967
).
43.
D. D.
Awschalom
and
K. W.
Schwarz
, “
Observation of a remanent vortex-line density in superfluid helium
,”
Phys. Rev. Lett.
52
,
49
(
1984
).
44.
R. M.
Bowley
,
P. V. E.
McClintock
,
F. E.
Moss
,
G. G.
Nancolas
, and
P. C. E.
Stamp
, “
The breakdown of superfluidity in liquid 4He: III. Nucleation of quantized vortex rings
,”
Philos. Trans. R. Soc., A
307
,
201
(
1982
).
45.
C. M.
Muirhead
,
W. F.
Vinen
, and
R. J.
Donnelly
, “
The nucleation of vorticity by ions in superfluid 4He: I. Basic theory
,”
Philos. Trans. R. Soc., A
311
,
433
(
1984
).
46.
M.
Blažkova
,
D.
Schmoranzer
,
L.
Skrbek
, and
W. F.
Vinen
, “
Generation of turbulence by vibrating forks and other structures in superfluid 4He
,”
Phys. Rev. B
79
,
054522
(
2009
).
47.
D. I.
Bradley
,
S. N.
Fisher
,
A. M.
Guenault
,
R. P.
Haley
,
V.
Tsepelin
,
G. R.
Pickett
, and
K. L.
Zaki
, “
The transition to turbulent drag for a cylinder oscillating in superfluid 4He: A comparison of quantum and classical behavior
,”
J. Low Temp. Phys.
154
,
97
(
2009
).
48.
H.
Yano
,
T.
Ogawa
,
A.
Mori
,
Y.
Miura
,
Y.
Nago
,
K.
Obara
,
O.
Ishikawa
, and
T.
Hata
, “
Transition to quantum turbulence generated by thin vibrating wires in superfluid 4He
,”
J. Low Temp. Phys.
156
,
132
(
2009
).
49.
J.
Jäger
,
B.
Schuderer
, and
W.
Schoepe
, “
Turbulent and laminar drag of superfluid helium on an oscillating microsphere
,”
Phys. Rev. Lett.
74
,
566
(
1995
).
50.
D.
Charalambous
,
L.
Skrbek
,
P. C.
Hendry
,
P. V. E.
McClintock
, and
W. F.
Vinen
, “
Experimental investigation of the dynamics of a vibrating grid in superfluid 4He over a range of temperatures and pressures
,”
Phys. Rev. E
74
,
036307
(
2006
).
You do not currently have access to this content.