The common phenomena of periodic and aperiodic bubbling, which were studied merely in single-phase gas jets, are discovered to exist in submerged gas-liquid jets through a micro-channel. Due to the participation of the liquid input flow which interacts with the gas phase, the periodic and aperiodic bubbling behaviors, as well as the regime transition mechanisms, are quite different from single-phase gas jets. Periodic bubbling is formed by injecting a regular Taylor flow into bulk liquid, in which a special motion of bubbles named “bubble bifurcation” is revealed. Bubbles move into the opposite orientation to the bubbles they touch because unequal contact angles make the bubbles tilt when they detach. The bifurcation process is described by the evolutions of the contact line, bubble centers, and the bifurcation point. The second bifurcation events cause the bubble branches to rotate simultaneously. The difference of periodicity between gas-liquid jets and single-phase gas jets is explained in a dimensionless form as a function of 1/St versus Fr. Aperiodic bubbling including double coalescence, triple, quadruple, and quintuple bubble formation is found to occur at lower gas velocities than single-phase gas jets because of the different mechanism of bubble detachment in which liquid rings make bubbles pitch off before necking. The effect of liquid rings on bubbling period, as well as the disturbance waves spreading over the bubble surface, is explained. Finally, the mechanisms of bubbling losing periodicity are figured out through analyzing the correspondence relationship between the evolutions of bubbling behaviors and the flow regime transitions in the micro-channel with regime boundaries well predicted by corresponding models.

1.
J. T.
Cieslinski
and
R.
Mosdorf
, “
Gas bubble dynamics-experiment and fractal analysis
,”
Int. J. Heat Mass Transfer
48
(
9
),
1808
(
2005
).
2.
W.
Zhang
and
D. Z.
Zhu
, “
Bubble characteristics of air-water bubbly jets in crossflow
,”
Int. J. Multiphase Flow
55
,
156
(
2013
).
3.
A.
Valencia
,
M.
Rosales
,
R.
Paredes
,
C.
Leon
, and
A.
Moyano
, “
Numerical and experimental investigation of the fluid dynamics in a Teniente type copper converter
,”
Int. Commun. Heat Mass Transfer
33
(
3
),
302
(
2006
).
4.
A. A.
Kulkarni
and
J. B.
Joshi
, “
Bubble formation and bubble rise velocity in gas-liquid systems: A review
,”
Ind. Eng. Chem. Res.
44
(
16
),
5873
(
2005
).
5.
L.
Neto
,
I. E.
,
D. Z.
Zhu
, and
N.
Rajaratnam
, “
Horizontal injection of gas-liquid mixtures in a water tank
,”
J. Hydraul. Eng.
134
(
12
),
1722
(
2008
).
6.
Y.
Sahai
and
R. I. L.
Guthrie
, “
Hydrodynamics of gas stirred melts. Part I. Gas/liquid coupling
,”
Metall. Trans. B
13
(
2
),
193
(
1982
).
7.
A.
Lagrange
,
A. L.
Charley
,
O.
Lartigue
, and
M.
Derouard
, “
Assembly of a 193-nm interferometer for immersion lithography: Vibration effects on image contrast
,”
Proc. SPIE
6154
,
61544O
(
2006
).
8.
S.
Di Bari
and
A. J.
Robinson
, “
Experimental study of gas injected bubble growth from submerged orifices
,”
Exp. Therm. Fluid Sci.
44
,
124
(
2013
).
9.
A. K.
Das
,
P. K.
Das
, and
P.
Saha
, “
Formation of bubbles at submerged orifices—Experimental investigation and theoretical prediction
,”
Exp. Therm. Fluid Sci.
35
(
4
),
618
(
2011
).
10.
H. N.
Oguz
and
A.
Prosperetti
, “
Dynamics of bubble growth and detachment from a needle
,”
J. Fluid Mech.
257
,
111
(
1993
).
11.
H. Z.
Li
,
Y.
Mouline
, and
N.
Midoux
, “
Modelling the bubble formation dynamics in non-Newtonian fluids
,”
Chem. Eng. Sci.
57
(
3
),
339
(
2002
).
12.
I.
Chakraborty
,
B.
Ray
,
G.
Biswas
,
F.
Durst
,
A.
Sharma
, and
P. S.
Ghoshdastidar
, “
Computational investigation on bubble detachment from submerged orifice in quiescent liquid under normal and reduced gravity
,”
Phys. Fluids
21
(
6
),
062103
(
2009
).
13.
M.
Ohta
,
D.
Kikuchi
,
Y.
Yoshida
, and
M.
Sussman
, “
Robust numerical analysis of the dynamic bubble formation process in a viscous liquid
,”
Int. J. Multiphase Flow
37
(
9
),
1059
(
2011
).
14.
M. C.
Ruzicka
,
R.
Bunganic
, and
J.
Drahoš
, “
Meniscus dynamics in bubble formation. Part I. Experiment
,”
Chem. Eng. Res. Des.
87
(
10
),
1349
(
2009
).
15.
M. C.
Ruzicka
,
R.
Bunganic
, and
J.
Drahoš
, “
Meniscus dynamics in bubble formation. Part II. Model
,”
Chem. Eng. Res. Des.
87
(
10
),
1357
(
2009
).
16.
W.
Zhang
and
R. B. H.
Tan
, “
A model for bubble formation and weeping at a submerged orifice
,”
Chem. Eng. Sci.
55
(
24
),
6243
(
2000
).
17.
G.
Duhar
and
C.
Colin
, “
A predictive model for the detachment of bubbles injected in a viscous shear flow with small inertial effects
,”
Phys. Fluids
16
(
5
),
L31
(
2004
).
18.
G.
Duhar
and
C.
Colin
, “
Dynamics of bubble growth and detachment in a viscous shear flow
,”
Phys. Fluids
18
(
7
),
077101
(
2006
).
19.
A.
Sevilla
,
J. M.
Gordillo
, and
C.
Martinez-Bazan
, “
Bubble formation in a coflowing air-water stream
,”
J. Fluid Mech.
530
,
181
(
2005
).
20.
C.
Gutiérrez-Montes
,
R.
Bolaños-Jiménez
,
A.
Sevilla
, and
C.
Martínez-Bazán
, “
Experimental and numerical study of the periodic bubbling regime in planar co-flowing air-water sheets
,”
Int. J. Multiphase Flow
50
,
106
(
2013
).
21.
W.
Zhang
and
R. B. H.
Tan
, “
A model for bubble formation and weeping at a submerged orifice with liquid cross-flow
,”
Chem. Eng. Sci.
58
(
2
),
287
(
2003
).
22.
G. Q.
Yang
,
B.
Du
, and
L. S.
Fan
, “
Bubble formation and dynamics in gas-liquid-solid fluidization—A review
,”
Chem. Eng. Sci.
62
(
1
),
2
(
2007
).
23.
V. K.
Badam
,
V.
Buwa
, and
F.
Durst
, “
Experimental investigations of regimes of bubble formation on submerged orifices under constant flow condition
,”
Can. J. Chem. Eng.
85
(
3
),
257
(
2007
).
24.
A.
Tufaile
and
J. C.
Sartorelli
, “
Chaotic behavior in bubble formation dynamics
,”
Physica A
275
(
3
),
336
(
2000
).
25.
L.
Zhang
and
M.
Shoji
, “
Aperiodic bubble formation from a submerged orifice
,”
Chem. Eng. Sci.
56
(
18
),
5371
(
2001
).
26.
V. V.
Buwa
,
D.
Gerlach
,
F.
Durst
, and
E.
Schlücker
, “
Numerical simulations of bubble formation on submerged orifices: Period-1 and period-2 bubbling regimes
,”
Chem. Eng. Sci.
62
(
24
),
7119
(
2007
).
27.
L. R.
Farias
and
G. A.
Irons
, “
A unified approach to bubbling-jetting phenomena in powder injection into iron and steel
,”
Metall. Trans. B
16
(
2
),
211
(
1985
).
28.
S.
Ghorai
,
G. G.
Roy
, and
S. K.
Roy
, “
Physical simulation of impurity removal through submerged liquid slag injection in steel melt
,”
ISIJ Int.
44
(
1
),
37
(
2004
).
29.
L.
Neto
,
I.
E
,
D. Z.
Zhu
, and
N.
Rajaratnam
, “
Bubbly jets in stagnant water
,”
Int. J. Multiphase Flow
34
(
12
),
1130
(
2008
).
30.
L.
Neto
,
I.
E
,
D. Z.
Zhu
, and
N.
Rajaratnam
, “
Effect of tank size and geometry on the flow induced by circular bubble plumes and water jets
,”
J. Hydraul. Eng.
134
(
6
),
833
(
2008
).
31.
W.
Zhang
and
D. Z.
Zhu
, “
Trajectories of air-water bubbly jets in crossflows
,”
J. Hydraul. Eng.
140
(
7
),
06014011
(
2014
).
32.
I. E.
Lima Neto
, “
Modeling the liquid volume flux in bubbly jets using a simple integral approach
,”
J. Hydraul. Eng.
138
(
2
),
210
(
2011
).
33.
A. K.
Gnanappa
,
E.
Gogolides
,
F.
Evangelista
, and
M.
Riepen
, “
Contact line dynamics of a superhydrophobic surface: Application for immersion lithography
,”
Microfluid. Nanofluid.
10
(
6
),
1351
(
2011
).
34.
L.
Hu
,
Y.
Shen
,
W.
Chen
, and
X.
Fu
, “
Experimental investigation on submerged gas-liquid mixture injection into water through a micro-channel
,”
Int. J. Multiphase Flow
83
,
39
(
2016
).
35.
R.
Xiong
and
J. N.
Chung
, “
An experimental study of the size effect on adiabatic gas-liquid two-phase flow patterns and void fraction in microchannels
,”
Phys. Fluids
19
(
3
),
033301
(
2007
).
36.
T.
Cubaud
and
C. M.
Ho
, “
Transport of bubbles in square microchannels
,”
Phys. Fluids
16
(
12
),
4575
(
2004
).
37.
R.
Mosdorf
and
T.
Wyszkowski
, “
Self-organising structure of bubble departures
,”
Int. J. Heat Mass Transfer
61
,
277
(
2013
).
38.
D.
Qian
and
A.
Lawal
, “
Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel
,”
Chem. Eng. Sci.
61
(
23
),
7609
(
2006
).
39.
K. A.
Triplett
,
S. M.
Ghiaasiaan
,
S. I.
Abdel-Khalik
, and
D. L.
Sadowski
, “
Gas-liquid two-phase flow in microchannels. Part I. Two-phase flow patterns
,”
Int. J. Multiphase Flow
25
(
3
),
377
(
1999
).
40.
A.
Ullmann
and
N.
Brauner
, “
The prediction of flow pattern maps in minichannels
,”
Multiphase Sci. Technol.
19
(
1
),
49
(
2007
).
41.
A.
Ullmann
and
N.
Brauner
, “
Closure relations for the shear stress in two-fluid models for core-annular flow
,”
Multiphase Sci. Technol.
16
(
4
),
355
(
2004
).
42.
A. M.
Barajas
and
R. L.
Panton
, “
The effects of contact angle on two-phase flow in capillary tubes
,”
Int. J. Multiphase Flow
19
(
2
),
337
(
1993
).
43.
C. Y.
Lee
and
S. Y.
Lee
, “
Influence of surface wettability on transition of two-phase flow pattern in round mini-channels
,”
Int. J. Multiphase Flow
34
(
7
),
706
(
2008
).
44.
V.
Haverkamp
,
V.
Hessel
,
H.
Löwe
,
G.
Menges
,
M. J. F.
Warnier
,
E. V.
Rebrov
,
M. H. J. M.
de Croon
,
J. C.
Schouten
, and
M. A.
Liauw
, “
Hydrodynamics and mixer-induced bubble formation in micro bubble columns with single and multiple-channels
,”
Chem. Eng. Technol.
29
(
9
),
1015
(
2006
).
45.
N.
Shao
,
W.
Salman
,
A.
Gavriilidis
, and
P.
Angeli
, “
CFD simulations of the effect of inlet conditions on Taylor flow formation
,”
Int. J. Heat Fluid Flow
29
(
6
),
1603
(
2008
).
46.
J. W.
Coleman
and
S.
Garimella
, “
Characterization of two-phase flow patterns in small diameter round and rectangular tubes
,”
Int. J. Heat Mass Tranfer
42
(
15
),
2869
(
1999
).
47.
T. S.
Zhao
and
Q. C.
Bi
, “
Co-current air–water two-phase flow patterns in vertical triangular microchannels
,”
Int. J. Multiphase Flow
27
(
5
),
765
(
2001
).
You do not currently have access to this content.