This paper concerns the propagation of shock waves in an enclosure filled with dusty gas. The main motivation for this problem is to probe the effect on such dynamics of solid particles dispersed in the fluid medium. This subject, which has attracted so much attention over recent years given its important implications in the study of the structural stability of systems exposed to high-energy internal detonations, is approached here in the framework of a hybrid numerical two-way coupled Eulerian-Lagrangian methodology. In particular, insights are sought by considering a relatively simple archetypal setting corresponding to a shock wave originating from a small spherical region initialized on the basis of available analytic solutions. The response of the system is explored numerically with respect to several parameters, including the blast intensity (via the related value of the initial shock Mach number), the solid mass fraction (mass load), and the particle size (Stokes number). Results are presented in terms of pressure-load diagrams. Beyond practical applications, it is shown that a kaleidoscope of fascinating patterns is produced by the “triadic” relationships among multiple shock reflection events and particle-fluid and particle-wall interaction dynamics. These would be of great interest to researchers and scientists interested in fundamental problems relating to the general theory of pattern formation in complex nonlinear multiphase systems.

1.
B.
Thornber
,
D.
Drikakis
,
D. L.
Youngs
, and
R. J. R.
Williams
, ‘‘
The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability
,’’
J. Fluid Mech.
654
,
99
139
(
2010
).
2.
M.
Lappa
, ‘‘
On the nature, formation and diversity of particulate coherent structures in microgravity conditions and their relevance to materials science and problems of astrophysical interest
,’’
Geophys. Astrophys. Fluid Dyn.
110
(
4
),
348
386
(
2016
).
3.
S.
Sivier
,
E.
Loth
,
J.
Baum
, and
R.
Löhner
, ‘‘
Unstructured adaptive remeshing finite element method for dusty shock flow
,’’
Shock Waves
4
,
15
23
(
1994
).
4.
V. M.
Boiko
,
V. P.
Kiselev
,
S. P.
Kiselev
,
A. N.
Papyrin
,
S. V.
Poplavskil
, and
V. M.
Fomin
, ‘‘
Interaction of a shock wave with a cloud of particles
,’’
Combust. Explosion Shock Waves
32
(
2
),
191
203
(
1996
).
5.
E. J.
Chang
and
K.
Kailasanath
, ‘‘
Shock wave interactions with particles and liquid fuel droplets
,’’
Shock Waves
12
,
333
341
(
2003
).
6.
M.
Sommerfeld
, ‘‘
The unsteadiness of shock waves propagating through gas-particle mixtures
,’’
Exp. Fluids
3
,
197
206
(
1985
).
7.
J. E.
Shepherd
, “
Structural response of piping to internal gas detonation
,”
J. Pressure Vessel Technol.
131
,
031204
(
2009
).
8.
R. P.
Dhakal
, “
Explosion induced structural response: An overview
,” in
NZSEE Conference
,
2004
.
9.
K.
Chojnicki
,
A. B.
Clarke
, and
J. C.
Phillips
, ‘‘
A shock-tube investigation of the dynamics of gas-particle mixtures: Implications for explosive volcanic eruptions
,’’
Geophys. Res. Lett.
33
,
L15309
, doi:10.1029/2006gl026414 (
2006
).
10.
M.
de’ Michieli Vitturi
,
T.
Esposti Ongaro
,
A.
Neri
,
M. V.
Salvetti
, and
F.
Beux
, ‘‘
An immersed boundary method for compressible multiphase flows: Application to the dynamics of pyroclastic density currents
,’’
Comput. Geosci.
11
,
183
198
(
2007
).
11.
R.
Erfani
,
H.
Zare-Behtash
, and
K.
Kontis
, ‘‘
Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance
,’’
J. Phys. D: Appl. Phys.
45
(
22
),
225201
(
2012
).
12.
T.
Ukai
,
H.
Zare-Behtash
,
K.
Kontis
, and
S.
Obayashi
, ‘‘
Three-dimensional shock wave distortion in shock-square vortex loop interaction
,’’
Exp. Therm. Fluid Sci.
79
,
85
90
(
2016
).
13.
G.
Rudinger
and
A.
Chang
, ‘‘
Analysis of nonsteady two phaseflow
,’’
Phys. Fluids
7
,
1747
1754
(
1964
).
14.
F.
Marconi
,
S.
Rudman
, and
V.
Calia
, ‘‘
Numerical study of one-dimensional unsteady particle-laden flows with shock
,’’
AIAA J.
19
,
1294
1301
(
1981
).
15.
F.
Higashino
, ‘‘
Characteristics method applied to blast waves in a dusty gas
,’’
Z. Naturforsch. A
38
,
399
406
(
1983
).
16.
G. F.
Carrier
, ‘‘
Shock waves in a dusty gas
,’’
J. Fluid Mech.
4
,
376
382
(
1958
).
17.
S. L.
Soo
, ‘‘
Gas-dynamic processes involving suspended solids
,’’
AIChE J.
7
(
3
),
384
391
(
1961
).
18.
A. R.
Kriebel
, ‘‘
Analysis of normal shock waves in particle-laden gas
,’’
J. Basic Eng.
86
(
4
),
655
665
(
1964
).
19.
G.
Rudinger
, ‘‘
Some properties of shock relaxation in gas flows carrying solid particles
,’’
Phys. Fluids
7
(
5
),
658
663
(
1964
).
20.
M.
Olim
,
G.
Ben-Dor
,
M.
Mond
, and
O.
Ingra
, ‘‘
A general attenuation law of moderate planar shock waves propagating into dusty gases with relatively high loading ratios of solid particles
,’’
Fluid Dyn. Res.
6
(
3-4
),
185
200
(
1990
).
21.
F.
Aizik
,
G.
Ben-Dor
,
T.
Elperin
,
O.
Igra
, and
M.
Mond
, ‘‘
Attenuation law of planar shock waves propagating through dust-gas suspensions
,’’
AIAA J.
3
(
5
),
953
955
(
1995
).
22.
E.
Loth
,
S.
Sivier
, and
J.
Baum
, ‘‘
Dusty detonation simulations with adaptive unstructured finite elements
,’’
AIAA J.
35
(
6
),
1018
1024
(
1997
).
23.
F.
Marconi
, ‘‘
Investigation of the interaction of a blast wave with an internal structure
,’’
AIAA J.
32
(
8
),
1561
1567
(
1994
).
24.
A. M.
Bagabir
and
D.
Drikakis
, ‘‘
Shock wave induced instability in internal explosion
,’’
Aeronaut. J.
109
(
1101
),
537
(
2005
).
25.
C. T.
Crowe
, ‘‘
Review numerical models for dilute gas-particle flows
,’’
J. Fluid Eng.
104
,
297
303
(
1982
).
26.
F. E.
Marble
, ‘‘
Dynamics of dusty gases
,’’
Ann. Rev. Fluid Mech.
2
,
397
446
(
1970
).
27.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic Press
,
New York
,
1978
).
28.
M.
Lappa
, ‘‘
On the variety of particle accumulation structures under the effect of gjitters
,’’
J. Fluid Mech.
726
,
160
195
(
2013
).
29.
C.
Hirsch
,
Numerical Computation of Internal and External Flows
, Computational Methods for Inviscid and Viscous Flows Vol. 2 (
John Wiley & Sons
,
Chichester
,
2002
).
30.
C. B.
Laney
,
Computational Gas-dynamics
(
Cambridge University Press
,
1998
).
31.
J.
Anderson
,
Computational Fluid Dynamics: The Basics with Applications
(
Mcgraw Hill
,
New York
,
1995
).
32.
A.
Sakurai
, “
Blast wave theory
,” in
Basic Developments in Fluid Dynamics
, edited by
M.
Holts
(
Academic Press
,
New York
,
1965
), Vol. 1, pp.
309
375
.
33.
E. I.
Chebotareva
,
A. N.
Aleshin
, and
S. G.
Zaytsev
, ‘‘
Investigation of interaction between reflected shocks and growing perturbation on an interface
,’’
Shock Waves
9
,
81
86
(
1999
).
34.
M.
Parmar
,
A.
Haselbacher
, and
S.
Balachandar
, ‘‘
Equation of motion for a sphere in non-uniform compressible flows
,’’
J. Fluid Mech.
699
,
352
375
(
2012
).
You do not currently have access to this content.